Advertisement

Features of the Development of Transceivers for Information and Communication Systems Considering the Distribution of Radar Operating Frequencies in the Frequency Range

  • Alexey S. Podstrigaev
  • Andrey V. Smolyakov
  • Vadim V. Davydov
  • Nikita S. Myazin
  • Maria G. Slobodyan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11118)

Abstract

The influence of out-of-band emitters on the performance of information and communication systems (ICS) is estimated. The broadband and narrowband ICS are analyzed. A significant influence of radars on the characteristics of ICS is shown. The distribution density histogram of more than 900 types of radars in frequency range is obtained and described. The prospects for the operation of ICS in the millimeter range are demonstrated.

Keywords

Information and communication systems Information and communication systems Radar Frequency range Radar operating frequencies Microwave interference Radio range load 

References

  1. 1.
    Chenakin, A.: Frequency Synthesizers. Concept to Product. Artech House, Norwood (2011)Google Scholar
  2. 2.
    Ameri, H., Attaran, A., Moghavvemi, M.: Design an X-band frequency synthesizer. Microwaves RF 79, 98–103 (2010)Google Scholar
  3. 3.
    Davydov, V.V., Ermak, S.V., Karseev, A.U., Nepomnyashchaya, E.K., Petrov, A.A., Velichko, E.N.: Fiber-optic super-high-frequency signal transmission system for sea-based radar station. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN 2014. LNCS, vol. 8638, pp. 694–702. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10353-2_65CrossRefGoogle Scholar
  4. 4.
    Ermolaev, A.N., Krishpents, G.P., Davydov, V.V., Vysoczkiy, M.G.: Compensation of chromatic and polarization mode dispersion in fiber-optic communication lines in microwave signals transmittion. J. Phy. Conf. Ser. 741(1), 012171 (2016).  https://doi.org/10.1088/1742-6596/741/1/012171CrossRefGoogle Scholar
  5. 5.
    Ryazantsev, L.B., Likhachev, V.P.: Assessment of range and radial velocity of objects of a broadband radar station under conditions of range cell migration. Meas. Tech. 60(11), 1158–1162 (2018).  https://doi.org/10.1007/s11018-018-1334-4CrossRefGoogle Scholar
  6. 6.
    Tarasenko, M.Yu., Davydov, V.V., Lenets, V.A., Akulich, N.V., Yalunina, T.R.: Features of use direct and external modulation in fiber optical simulators of a false target for testing radar station. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC -2017. LNCS, vol. 10531, pp. 227–232. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67380-6_21CrossRefGoogle Scholar
  7. 7.
    Streetly, M. (ed.): Jane’s Radar and Electronic Warfare Systems, 22nd ed. IHS Jane’s, London (2010)Google Scholar
  8. 8.
    Podstrigaev, A.S., Likhachev, V.P., Ryazantsev, L.B.: Technique for tuning microwave strip devices. Meas. Tech. 59(5), 547–550 (2016).  https://doi.org/10.1007/s11018-016-1005-2CrossRefGoogle Scholar
  9. 9.
    Podstrigaev, A.S.: All-purpose adjuster for microwave microstrip devices. In: 24th International Crimean Conference on Microwave & Telecommunication Technology (CriMiCo), pp. 896–897 (2014).  https://doi.org/10.1109/crmico.2014.6959682
  10. 10.
    Bystrov, V.V., Likhachev, V.P., Ryazantsev, L.B.: Experimental check of the coherence of radiolocation signals from objects with nonlinear electrical properties. Meas. Tech. 57(9), 1073–1076 (2014).  https://doi.org/10.1007/s11018-014-0582-1CrossRefGoogle Scholar
  11. 11.
    Koo, V.C., et al.: A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring. Prog. Electromagnet. Res. 122, 245–268 (2012)CrossRefGoogle Scholar
  12. 12.
    González-Partida, J.-T., Almorox-González, P., Burgos-Garcia, M., Dorta-Naranjo, B.P.: SAR system for UAV operation with motion error compensation beyond the resolution cell. Sensors 8(5), 3384–3405 (2008)CrossRefGoogle Scholar
  13. 13.
    Giancarlo, M., Broggi, A., Cerri, P.: Vehicle and guard rail detection using radar and vision data fusion. IEEE Trans. Intell. Transp. Syst. 8(1), 95–105 (2007).  https://doi.org/10.1109/TITS.2006.888597CrossRefGoogle Scholar
  14. 14.
    Viikari, V.V., Varpula, T., Kantanen, M.: Road-condition recognition using 24-GHz automotive radar. IEEE Trans. Intell. Transp. Syst. 10(4), 639–648 (2009).  https://doi.org/10.1109/TITS.2009.2026307CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alexey S. Podstrigaev
    • 1
    • 2
  • Andrey V. Smolyakov
    • 2
  • Vadim V. Davydov
    • 3
    • 4
  • Nikita S. Myazin
    • 3
  • Maria G. Slobodyan
    • 5
  1. 1.Scientific-Research Institute Vector OJSCSt. PetersburgRussia
  2. 2.Saint Petersburg Electrotechnical University “LETI”St. PetersburgRussia
  3. 3.Peter the Great Saint-Petersburg Polytechnic UniversitySt. PetersburgRussia
  4. 4.Department of EcologyAll-Russian Research Institute of PhytopathologyMoscow RegionRussia
  5. 5.Bryansk State Technical UniversityBryanskRussia

Personalised recommendations