Advertisement

A-MSDU Frame Aggregation Mechanism Efficiency for IEEE 802.11ac Network. The Optimal Number of Frames in A-MSDU Block

  • Anton VikulovEmail author
  • Alexander Paramonov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11118)

Abstract

This article discusses the effect of the A-MSDU frame aggregation mechanism on the efficiency of the IEEE 802.11 network. In order to define its main parameters as a function of the operation conditions the model of this mechanism is proposed. An analytical model is obtained for the probability of successful receipt of the code word as a function of bit error rate. An analytical model for the channel utilization efficiency as a function of bit error rate and number of frames in the A-MSDU block for the IEEE 802.11ac standard is also obtained. The proposed analytical models can be used to evaluate the network’s performance. The method of determining the optimal number of frames in the A-MSDU block is proposed in terms of maximum efficiency of channel resource usage.

Keywords

Wireless access network IEEE 802.11ac Frame aggregation A-MSDU Channel efficiency Modulation and coding scheme Frame transmitting time 

References

  1. 1.
    IEEE Std 802.11 – 2016. IEEE Standard for Information technology — Telecommunications and information exchange between systems. Local and metropolitan area networks — Specific requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (2016)Google Scholar
  2. 2.
    Paramonov, A., Hussain, O., Samouylov, K., Koucheryavy, A., Kirichek, R., Koucheryavy, Y.: Clustering optimization for Out-Of-Band D2D communications. Wirel. Commun. Mob. Comput. 2017, Article ID 6747052, 11 pages (2017).  https://doi.org/10.1155/2017/6747052 CrossRefGoogle Scholar
  3. 3.
    Makolkina, M., Vikulov, A., A. Paramonov: The augmented reality service provision in D2D network. In: Proceedings of 20th International Conference. Distributed Computer and Communication Networks (DCCN 2017) Moscow, Russia, September 25–29, pp. 281–290 (2019)Google Scholar
  4. 4.
    Ginzburg, B, et al.: Performance Analysis of A-MPDU and A-MSDU Aggregation in IEEE 802.11n (2007)Google Scholar
  5. 5.
    Gautam Bhanage: AMSDU vs AMPDU: A Brief Tutorial on WiFi Aggregation Support. Report number: GDB2017-004. arXiv:1704.07015 [cs.NI], April 2017
  6. 6.
    Paramonov, A., Vikulov, A., Scherbakov, S.: Practical results of WLAN traffic analysis. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC -2017. LNCS, vol. 10531, pp. 721–733. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67380-6_68CrossRefGoogle Scholar
  7. 7.
    Bianchi, G.: Performance analysis of the IEEE 802.11 DCF. IEEE J. Sel. Area Commun. 18(3), 535–547 (2000)CrossRefGoogle Scholar
  8. 8.
    Yazid, M., et al.: Performance Study of Frame Aggregation Mechanisms in the New Generation WiFi. VECoS (2016)Google Scholar
  9. 9.
    Butler, B.K.: Minimum distances of the QC-LDPC Codes in IEEE 802 Communication Standards. Arxiv.org https://arxiv.org/pdf/1602.02831.pdf. Accessed 05 May 2018
  10. 10.
    Westcott, D.A., Coleman, D.D., Mackenzie, P., Miller, B.: CWAP certified wireless professional official study guide (PW-270). Wiley Publishing, Chichester (2011)Google Scholar
  11. 11.
    Bianchi, G.: IEEE 802.11—saturation throughput analysis. IEEE Commun. Lett. 2(12), 318–320 (1998)CrossRefGoogle Scholar
  12. 12.
    Daldoul, Y., Ahmed, T., Meddour, D.: IEEE 802.11n Aggregation Performance Study for the Multicast. IFIP Wireless Days (WD 2011), October 2011, Canada, pp. 1–6 (2011)Google Scholar
  13. 13.
    Kolap, J.: Frame aggregation mechanism for high-throughput 802.11n wlans. Int. J. Wirel. Mob. Netw. 4, 141–153 (2012)CrossRefGoogle Scholar
  14. 14.
    García, M.A., Santos, M., Villalón, J.: IEEE 802.11n MAC mechanisms for high throughput: a performance evaluation. In: ICNS 2011. The Seventh International Conference on Networking and Services (2011)Google Scholar
  15. 15.
    Bourawy, A., Alokap, T.: Evaluation of frame aggregation in gigabit WLANs. Int. J. Eng. Appl. Sci. (IJEAS), 4(4), April 2017. ISSN: 2394-3661Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.The Bonch-Bruevich State University of TelecommunicationsSt. PetersburgRussian Federation

Personalised recommendations