Advertisement

Spectral Efficiency Comparison Between FTN Signaling and Optimal PR Signaling for Low Complexity Detection Algorithm

  • Aleksei PlotnikovEmail author
  • Aleksandr Gelgor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11118)

Abstract

This paper is devoted to detection of signals with intentionally introduced intersymbol interference (ISI). Faster-than-Nyquist (FTN) signaling and optimal partial response signaling (PRS) are considered. As the detection algorithm it is used a sub-optimal modification of BCJR algorithm, named Max-Log-M-BCJR. Signals are compared in the plane of spectral efficiency and energy consumptions for the fixed value of bit error rate (BER) and different grades of detection algorithm complexity. It is shown that using the sub-optimal BCJR algorithm provides a noticeable decrease in the computational complexity of the detection. For deep ISI optimal PR signaling provides higher spectral efficiency as compared with FTN signaling and vise versa.

Keywords

Spectral efficiency Intersymbol interference Faster-than-Nyquist signaling Partial response signaling Optimal pulse BCJR Viterbi algorithm 

References

  1. 1.
    Mazo, J.E.: Faster-than-Nyquist signaling. Bell Syst. Tech. J. 54(8), 1451–1462 (1975)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Liveris, A.D., Georghiades, C.N.: Exploiting faster-than-Nyquist signaling. IEEE Trans. Commun. 51(9), 1502–1511 (2003)CrossRefGoogle Scholar
  3. 3.
    Said, A., Anderson, J.B.: Bandwidth-efficient coded modulation with optimized linear partial-response signals. IEEE Trans. Inf. Theory 44(2), 701–713 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Forney, G.D.: The Viterbi Algorithm. Proc. IEEE 61(3), 268–278 (1973)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bahl, L.R., et al.: Optimal decoding of linear codes for minimizing symbol rate. IEEE Trans. Inform. Theory IT-20, 284–287 (1974)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Anderson, J.B.: Limited search trellis decoding of convolutional codes. IEEE Trans. Inf. Theory 35, 944–955 (1989)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Franz, V., Anderson, J.: Concatenated decoding with a reduced search BCJR algorithm. IEEE J. Sel. Areas Commun. 16(2), 186–195 (1998)CrossRefGoogle Scholar
  8. 8.
    Rusek, F.: Partial response and faster-than-Nyquist signaling. Ph.D. dissertation. Lund University (2007)Google Scholar
  9. 9.
    Gorlov, A., Gelgor, A., Nguyen, V.P.: Root-Raised cosine versus optimal finite pulses for faster-than-Nyquist generation. In: Galinina, O., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2016. LNCS, vol. 9870, pp. 628–640. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46301-8_54CrossRefGoogle Scholar
  10. 10.
    Robertson, P., Villerbrun, E., Hoeher, P.: A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain. In: Proceedings of International Conference on Communications, Seattle, WA, June 1995, pp. 1009–1013 (1995)Google Scholar
  11. 11.
    Fragouli, C., Seshadri, N., Turin, W.: On the rediced trellis equalization using the M-BCJR algorithm. Technical report TR 99.15.1, Florham Park, NJ, November 1999Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations