Algebraic Methods for Orthopairs and Induced Rough Approximation Spaces

  • Gianpiero Cattaneo
  • Davide CiucciEmail author
Part of the Trends in Mathematics book series (TM)


In this chapter we are interested to study the structures arising from pairs of elements from a partially ordered set (poset) which share some orthogonality between them, the so-called orthopairs, with respect to a unary operation of De Morgan complementation (or in the case of a lattice interpreted as De Morgan negation).


  1. 1.
    Alexandrov, P.: Discrete Räume. Math. Sb. 2, 501–518 (1937)Google Scholar
  2. 2.
    Arenas, F.G.: Alexandroff spaces. Acta Math. Univ. Comenian. 68, 17–25 (1999)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)CrossRefGoogle Scholar
  4. 4.
    Atanassov, K.T.: More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 33, 37–45 (1989)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Atanassov, K.T.: Answer to D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk and H. Prade’s paper “terminological difficulties in fuzzy set theory - the case of Intuitionistic Fuzzy Sets”. Fuzzy Sets Syst. 156, 496–499 (2005)Google Scholar
  6. 6.
    Belluce, L.P.: Generalized fuzzy connectives on MV-algebras. J. Math. Anal. Appl. 206, 485–499 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Birkhoff, G.: Lattice theory. In: American Mathematical Society Colloquium Publication, vol. XXV, 3rd edn. American Mathematical Society, Providence (1967) (first edition 1940, second (revisited) edition 1948)Google Scholar
  8. 8.
    Bonikowski, Z.: A certain conception of the calculus of rough sets. Notre Dame J. Formal Log. 33, 412–421 (1992)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Borowski, L. (ed.): Selected Works of J. Łukasiewicz. North-Holland, Amsterdam (1970)Google Scholar
  10. 10.
    Cattaneo, G.: Brouwer–Zadeh (fuzzy-intuitionistic) posets for unsharp quantum mechanics. Int. J. Theor. Phys. 31, 1573–1597 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cattaneo, G.: Generalized rough sets (preclusivity fuzzy-intuitionistic BZ lattices). Stud. Log. 58, 47–77 (1997)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cattaneo, G.: Algebraic methods for rough approximation spaces by lattice interior–closure operations. In: Mani, A., Düntsch, I., Cattaneo, G. (eds.) Algebraic Methods in General Rough Sets, Trends in Mathematics. Springer, Berlin (2018)zbMATHGoogle Scholar
  13. 13.
    Cattaneo, G., Ciucci, D.: BZW algebras for an abstract approach to roughness and fuzziness. In: IPMU 2002, July 1–5 2002, Annecy, Proceedings, pp. 1103–1110. ESIA – Université de Savoie (2002)Google Scholar
  14. 14.
    Cattaneo, G., Ciucci, D.: Heyting Wajsberg Algebras as an Abstract Environment Linking Fuzzy and Rough Sets, pp. 77–84. Springer, Berlin (2002)CrossRefGoogle Scholar
  15. 15.
    Cattaneo, G., Ciucci, D.: Generalized negations and intuitionistic fuzzy sets. A criticism to a widely used terminology. In: Proceedings of International Conference in Fuzzy Logic and Technology (EUSFLAT03), pp. 147–152. University of Applied Sciences of Zittau–Goerlitz, Zittau (2003)Google Scholar
  16. 16.
    Cattaneo, G., Ciucci, D.: Intuitionistic fuzzy sets or orthopair fuzzy sets? In: Proceedings of International Conference in Fuzzy Logic and Technology (EUSFLAT03), pp. 153–158. University of Applied Sciences of Zittau–Goerlitz, Zittau (2003)Google Scholar
  17. 17.
    Cattaneo, G., Ciucci, D.: Algebraic structures for rough sets. In: Peters, J.F. et al. (eds.) Fuzzy Sets and Rough Sets. LNCS – Transactions on Rough Sets II, vol. 3135, pp. 208–252. Springer, Berlin (2004)CrossRefGoogle Scholar
  18. 18.
    Cattaneo, G., Ciucci, D.: Basic intuitionistic principles in fuzzy set theories and its extensions (a terminological debate on Atanassov IFS). Fuzzy Sets Syst. 157, 3198–3219 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Cattaneo, G., Ciucci, D.: Some Methodological Remarks About Categorical Equivalence in the Abstract Approach to Roughness - Part I, pp. 277–283. Springer, Berlin (2006)CrossRefGoogle Scholar
  20. 20.
    Cattaneo, G., Lombardo, F.: Independent axiomatization of MV-algebras. Tatra Mt. Math. Publ. 15, 227–232 (1998). Special Issue: Quantum Structures II, Dedicated to Gudrun KalmbachGoogle Scholar
  21. 21.
    Cattaneo, G., Manià, A.: Abstract orthogonality and orthocomplementation. Proc. Camb. Philos. Soc. 76, 115–132 (1974)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Cattaneo, G., Marino, G.: Non-usual orthocomplementations on partially ordered sets and fuzziness. Fuzzy Sets Syst. 25, 107–123 (1988)CrossRefGoogle Scholar
  23. 23.
    Cattaneo, G., Nisticò, G.: Brouwer-Zadeh posets and three valued Łukasiewicz posets. Fuzzy Sets Syst. 33, 165–190 (1989)CrossRefGoogle Scholar
  24. 24.
    Cattaneo, G., Dalla Chiara, M.L., Giuntini, R.: Some algebraic structures for many-valued logics. Tatra Mt. Math. Publ. 15, 173–196 (1998). Special Issue: Quantum Structures II, Dedicated to Gudrun KalmbachGoogle Scholar
  25. 25.
    Cattaneo, G., Giuntini, R., Pilla, R.: BZMVdM and Stonian MV algebras (applications to fuzzy sets and rough approximations). Fuzzy Sets Syst. 108, 201–222 (1999)CrossRefGoogle Scholar
  26. 26.
    Cattaneo, G., Ciucci, D., Giuntini, R., Konig, M.: Algebraic structures related to many valued logical systems. part I: Heyting Wajsberg algebras. Fund. Inform. 63, 331–355 (2004)Google Scholar
  27. 27.
    Cattaneo, G., Ciucci, D., Giuntini, R., Konig, M.: Algebraic structures related to many valued logical systems. part II: equivalence among some widespread structures. Fund. Inform. 63, 357–373 (2004)Google Scholar
  28. 28.
    Cattaneo, G., Ciucci, D., Dubois, D.: Algebraic models of deviant modal operators on de Morgan and Kleene algebras. Inf. Sci. 181, 4075–4100 (2011)CrossRefGoogle Scholar
  29. 29.
    Chang, C.C.: Algebraic analysis of many valued logics. Trans. Am. Math. Soc. 88, 467–490 (1958)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Chellas, B.F.: Modal Logic, An Introduction. Cambridge University Press, Cambridge (1988) (first published 1980)zbMATHGoogle Scholar
  31. 31.
    Cignoli, R., D’Ottaviano, I., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic, Dordrecht (1999)zbMATHGoogle Scholar
  32. 32.
    Ciucci, D.: Orthopairs and granular computing. Granular Comput. 1(3), 159–170 (2016)CrossRefGoogle Scholar
  33. 33.
    Ciucci, D., Dubois, D.: Three-valued logics, uncertainty management and rough sets. Trans. Rough Sets 17, 1–32 (2014)zbMATHGoogle Scholar
  34. 34.
    Ciucci, D., Dubois, D., Lawry, J.: Borderline vs. unknown: comparing three-valued representations of imperfect information. Int. J. Approx. Reason. 55(9), 1866–1889 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Cornelis, C., Deschrijver, G., Kerre, E.: Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. Int. J. Approx. Reason. 35, 55–95 (2004)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Deschrijver, G., Cornelis, C., Kerre, E.: On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Trans. Fuzzy Syst. 12, 45–61 (2004)CrossRefGoogle Scholar
  37. 37.
    Dubois, D., Gottwald, S., Hajek, P., Kacprzyk, J., Prade, H.: Terminological difficulties in fuzzy set theory - the case of Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 156, 485–491 (2005)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Dunn, J.M.: Relevance logic and entailment. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosophical Logic, vol. 3, pp. 117–224. Kluwer, Dordrecht (1986)CrossRefGoogle Scholar
  39. 39.
    Grzegorzewski, P., Mrowka, E.: Some notes on (Atanassov) Intuitionistic fuzzy sets. Fuzzy Sets Syst. 156, 492–495 (2005)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)CrossRefGoogle Scholar
  41. 41.
    Hardegree, G.M.: The conditional in abstract and concrete quantum logic. In: Hooker, C.A. (ed.) Logico–Algebraic Approach to Quantum Mechanics. II, pp. 49–108. D. Reidel, Dordrecht (1979)CrossRefGoogle Scholar
  42. 42.
    Hardegree, G.M.: Material implication in orthomodular (and Boolean) lattices. Notre Dame J. Modal Log. 22, 163–182 (1981)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Helmberg, G.: Introduction to Spectral Theory in Hilbert Spaces. Series in Applied Mathematics and Mechanics, vol. 6. North-Holland, Amsterdam (1975) (first ed. 1969)Google Scholar
  44. 44.
    Heyting, A.: Intuitionism: An Introduction, 2nd edn. North-Holland, Amsterdam (1966) (first ed. 1956)zbMATHGoogle Scholar
  45. 45.
    Kraus, K.: States, Effects, and Operations. Lecture Notes in Physics, vol. 190. Springer, Berlin (1983)Google Scholar
  46. 46.
    Ludwig, G.: The measuring process and an axiomatic foundation of quantum mechanics. In: D’Espagnat, B. (ed.) Foundations of Quantum Mechanics. Academic, New York (1971)Google Scholar
  47. 47.
    Łukasiewicz, J.: O logice trójwartościowej. Ruch Filozoficzny 5, 170–171 (1920). English version: on three-valued logic. In: Borowski, L. (ed.) Selected Works of J. Łukasiewicz, p. 87. North-Holland, Amsterdam (1970)Google Scholar
  48. 48.
    Mackey, G.W.: Quantum mechanics and Hilbert spaces. Am. Math. Mon. 64, 45–57 (1957)MathSciNetCrossRefGoogle Scholar
  49. 49.
    McKinsey, J.C.C., Tarski, A.: On closed elements in closure algebras. Ann. Math. 47, 122–162 (1946)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Moisil, G.C.: Notes sur les logiques non-chrysippiennes. Ann. Sci. Univ. Jassy 27, 86–98 (1941)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Monteiro, A.: Axiomes independants pour les algebres de Brouwer. Revista de la Union Matematica Argentina y de la Associacion Fisica Argentina XVII, 146–160 (1955)Google Scholar
  52. 52.
    Monteiro, A.: Sur les algèbres de Heyting symétriques. Port. Math. 39, 1–237 (1980)zbMATHGoogle Scholar
  53. 53.
    Pagliani, P.: Towards a logic of rough sets systems. In: Conference Proceeding of Third International Workshop on Rough Sets and Soft Computing, pp. 59–62. Sose, California (1994)Google Scholar
  54. 54.
    Pagliani, P.: Rough sets and Nelson algebras. Fund. Inform. 27(2,3), 205–219 (1996)Google Scholar
  55. 55.
    Pagliani, P.: Rough set theory and logic–algebraic structures. In: Incomplete Information: Rough Set Analysis, pp. 109–190. Physica-Verlag/Springer, Heidelberg (1998)CrossRefGoogle Scholar
  56. 56.
    Pagliani, P., Chakraborty, M.: A Geometry of Approximation. Springer, Dordrecht (2008)CrossRefGoogle Scholar
  57. 57.
    Pawlak, Z.: Information systems - theoretical foundations. Inf. Syst. 6, 205–218 (1981)CrossRefGoogle Scholar
  58. 58.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)CrossRefGoogle Scholar
  59. 59.
    Pawlak, Z.: On learning – a rough sets approach. In: Symposium on Computation Theory. Lecture Notes in Computer Science, vol. 208, pp. 197–227. Springer, Berlin (1985)CrossRefGoogle Scholar
  60. 60.
    Pawlak, Z.: Rough sets: a new approach to vagueness. In: Zadeh, L.A., Kacprzyc, J. (eds.) Fuzzy Logic for the Management of Uncertainty, pp. 105–118. Wiley, New York (1992)Google Scholar
  61. 61.
    Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics. Monografie Matematyczne, vol. 41, 3rd edn. Polish Scientific Publishers, Warszawa (1970)Google Scholar
  62. 62.
    Rescher, N.: Many-Valued Logic. McGraw-Hill, New York (1969)zbMATHGoogle Scholar
  63. 63.
    Surma, S.: Logical Works. Polish Academy of Sciences, Wroclaw (1977)Google Scholar
  64. 64.
    Turunen, E.: Mathematics Behind Fuzzy Logic. Physica-Verlag/Springer, Heidelberg (1999)zbMATHGoogle Scholar
  65. 65.
    Vakarelov, D.: Notes on n-lattices and constructive logic with strong negation. Stud. Log. 36, 109–125 (1977)MathSciNetCrossRefGoogle Scholar
  66. 66.
    Wajsberg, M.: Aksjomatyzacja trówartościowego rachunkuzdań [Axiomatization of the three-valued propositional calculus]. Comptes Rendus des Séances de la Societé des Sciences et des Lettres de Varsovie 24, 126–148 (1931). English Translation in [63]Google Scholar
  67. 67.
    Wajsberg, M.: Beiträge zum Metaaussagenkalkül I. Monashefte fur Mathematik un Physik 42, 221–242 (1935). English Translation in [63]Google Scholar
  68. 68.
    Walker, E.A.: Stone algebras, conditional events, and three valued logic. IEEE Trans. Syst. Man Cybern. 24(12), 1699–1707 (1994)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Ward, M., Dilworth, R.: Residuated lattices. Trans. Am. Math. Soc. 45, 335–354 (1939)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità di Milano-BicoccaMilanoItaly

Personalised recommendations