Algebraic Representation, Dualities and Beyond

Part of the Trends in Mathematics book series (TM)


In this research chapter, dualities and representations of various kinds associated with the semantics of rough sets are explained, critically reviewed, new proofs have been proposed, open problems are specified and new directions are suggested. Some recent duality results in the literature are also adapted for use in rough contexts. New results are also proved on granular connections between generalized rough and L-fuzzy sets by the present author. Philosophical aspects of the concepts have also been considered by her in this research chapter.



I would like to thank Ivo (Prof. Ivo Düntsch) for many discussions, remarks and for collaborating in the preparation of this research chapter. Initially, a joint chapter was planned, but it did not happen that way because of shortage of time. The first section of the chapter has in fact been partly written by Ivo. I would also like to thank the second readers of this chapter Sandor (Prof. Sándor Radeleczki) and Davide (Prof. Davide Ciucci) for their useful remarks.


  1. 1.
    Abad, M., Varela, J.P., Torrens, A.: Topological representation for implication algebras. Algebra Univers. 52, 39–48 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Adamek, J., Lawvere, F., Rosicky, J.: On the duality between varieties and algebraic theories. Algebra Univers. 49, 35–49 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Arenas, F.G.: Alexandroff spaces. Acta Math. Univ. Comenianae LXVIII(1), 17–25 (1999)Google Scholar
  4. 4.
    Awodey, S., Forssell, H.: First order logical duality. Ann. Pure Appl. Logic 164, 319–348 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Banerjee, M., Chakraborty, M.K.: Rough sets through algebraic logic. Fund. Inform. 28, 211–221 (1996)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Banerjee, M., Chakraborty, M.K.: Algebras from rough sets – an overview. In: Pal, S.K., et al. (eds.) Rough-Neural Computing, pp. 157–184. Springer, Berlin (2004)CrossRefGoogle Scholar
  7. 7.
    Banerjee, M., Khan, M.A.: Propositional logics for rough set theory. In: Transactions on Rough Sets VI. Lecture Notes in Computer Science, vol. 4374, pp. 1–25. Springer, Berlin (2007)Google Scholar
  8. 8.
    Bergmann, M.: An Introduction To Many-Valued and Fuzzy Logics. Cambridge University Press, Cambridge (2008)zbMATHCrossRefGoogle Scholar
  9. 9.
    Birkhoff, G.: Lattice Theory (American Mathematical Society Colloquium Publications), vol. 25, 3rd edn. AMS, Providence (1967)Google Scholar
  10. 10.
    Bonikowski, Z.: A certain conception of the calculus of rough sets. Notre Dame J. Formal Log. 33, 412–421 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bonikowski, Z., Bryniarski, E., Wybraniec-Skardowska, U.: Extensions and intentions in the rough set theory. Inf. Sci. 107, 149–167 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Cattaneo, G.: Algebraic methods for rough approximation spaces by lattice interior–closure operations. In: Mani, A., Düntsch, I., Cattaneo, G. (eds.) Algebraic Methods in General Rough Sets. Trends in Mathematics, pp. 13–156. Springer, Cham (2018)Google Scholar
  13. 13.
    Cattaneo, G., Ciucci, D.: Lattices with interior and closure operators and abstract approximation spaces. In: Peters, J.F., et al. (eds.) Transactions on Rough Sets X. Lecture Notes in Computer Science, vol. 5656, pp. 67–116. Springer, Berlin (2009)CrossRefGoogle Scholar
  14. 14.
    Cattaneo, G., Ciucci, D.: The ortho-pair algebraic semantics of roughness. In: Mani, A., Düntsch, I., Cattaneo, G. (eds.) Algebraic Methods in General Rough Sets. Trends in Mathematics, pp. 552–640. Springer, Cham (2018)Google Scholar
  15. 15.
    Cayley, A.: On the theory of groups, as depending on the symbolic equation θ n = 1. Philos. Mag. Ser. 4 7, 40–47 (1854)Google Scholar
  16. 16.
    Celani, S.: Modal Tarski algebras. Rep. Math. Logic 39, 113–126 (2005)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Celani, S., Cabrer, L.: topological duality for Tarski algebras. Algebra Univers. 58(1), 73–94 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Chajda, I.: Algebraic Theory of Tolerance Relations. Olomouc University Press, Olomouc (1991)zbMATHGoogle Scholar
  19. 19.
    Chajda, I., Niederle, J., Zelinka, B.: On existence conditions for compatible tolerances. Czechoslov. Math. J. 26, 304–311 (1976)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Chen, C.C., Grätzer, G.: Stone lattices II. Structure theorems. Can. J. Math. 21, 895–903 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Ciric, M., Bogdanovic, S., Kovacevic, J.: Direct sum decompositions of quasi ordered sets. Filomat (NIS) 12(1), 65–82 (1998)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Ciucci, D.: Back to the beginnings: Pawlak’s definitions of the terms information system and rough set. In: Wang, G., et al. (eds.) Thriving Rough Sets. Studies in Computational Intelligence, vol. 708, pp. 225–236. Springer, Cham (2017)CrossRefGoogle Scholar
  23. 23.
    Comer, S.: An algebraic approach to the approximation of information. Fund. Inform. 14, 492–501 (1991)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Comer, S.: On connections between information systems, rough sets, and algebraic logic. In: Rauszer, C. (ed.) Algebraic Methods in Logic and Computer Science, pp. 117–124. Polish Academy of Sciences, Warsaw (1993)zbMATHGoogle Scholar
  25. 25.
    Concilio, A.D., Guadagni, C., Peters, J., Ramanna, S.: Descriptive proximities I: properties and interplay between classical proximities and overlap, 1–12 (2016). ArXiv 1609.06246v1Google Scholar
  26. 26.
    Costa, P.T. Jr., McCrae, R.R.: The five-factor model of personality and its relevance to personality disorders. J. Personal. Disord. 6, 343–359 (1992)CrossRefGoogle Scholar
  27. 27.
    Csajbok, Z.E.: Approximation of sets based on partial covering. Ph.D. thesis (2011)Google Scholar
  28. 28.
    Czelakowski, J.: Proto-Algebraic Logics. Trends in Logic. Springer, Amsterdam (2001)Google Scholar
  29. 29.
    Dietrich, B.: Matroids and antimatroids—a survey. Discret. Math. 78, 223–237 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Dunn, J.M.: Generalised ortho negation. In: Wansing, H. (ed.) Negation: A Notion in Focus, pp. 3–26. Walter de Gruyter, Berlin (1996)Google Scholar
  31. 31.
    Dunn, J.M.: Partiality and its dual. Stud. Logica 66, 5–40 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Düntsch, I.: Rough sets and algebras of relations. In: Orłowska, E. (ed.) Incomplete Information and Rough Set Analysis, pp. 109–119. Physica, Heidelberg (1998)zbMATHGoogle Scholar
  33. 33.
    Düntsch, I., Orłowska, E.: Mixing modal and sufficiency operator. Bull. Sect. Log. 28(2), 99–107 (1999)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Düntsch, I., Orłowska, E.: An algebraic approach to preference relations. In: Proceedings of Relational and Algebraic Methods in Computer Science - RAMICS’2011, pp. 141–147 (2011). zbMATHCrossRefGoogle Scholar
  35. 35.
    Düntsch, I., Orłowska, E.: Discrete dualities for double stone algebras. Stud. Logica 99(1), 127–142 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Düntsch, I., Orłowska, E.: Discrete duality for rough relation algebras. Fund. Inform. 127, 35–47 (2013). MathSciNetzbMATHGoogle Scholar
  37. 37.
    Düntsch, I., Orłowska, E.: Discrete dualities for some algebras with relations. J. Logic. Algebraic Methods Program. 83(2), 169–179 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Dzik, W., Järvinen, J., Kondo, M.: Intuitionistic propositional logic with galois connections. Log. J. IGPL 18, 837–858 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Dzik, W., Järvinen, J., Kondo, M.: Representing expansions of bounded distributive lattices with galois connections in terms of rough sets. Int. J. Approx. Reason. 55(1), 427–435 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Edelman, P.H., Jamison, R.E.: Theory of convex geometries. Geom. Dedicata 19(3), 247–270 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Erne, M.: Prime and maximal ideals of posets. Math. Slovaca 56(1), 1–22 (2006)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Ershov, Y.L., Palyutin, E.A.: Mathematical Logic. Mir Publishers, Moscow (1984)Google Scholar
  43. 43.
    Fishburn, P.: Interval Orders and Interval Graphs. Wiley, Hoboken (1985)zbMATHCrossRefGoogle Scholar
  44. 44.
    Ge, X., Bai, X., Yun, Z.: Topological characterizations of covering for special covering-based upper approximation operators. Inf. Sci. 204, 70–81 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Gehrke, M.: Canonical extensions, esakia spaces, and universal models. In: Bezhanishvili, G. (ed.) Leo Esakia on Duality in Modal and Intuitionistic Logics. Outstanding Contributions to Logic, vol. 4, pp. 9–41. Springer, Amsterdam (2014)Google Scholar
  46. 46.
    Gehrke, M., Walter, E.: The structure of rough sets. Bull. Pol. Acad. Sci. (Math.) 40, 235–245 (1992)Google Scholar
  47. 47.
    Goldblatt, R.: Mathematical modal logic: a view of its evolution. In: Gabbay, D.M., Woods, J. (eds.) Handbook of the History of Logic, vol. 7, pp. 1–98. Elsevier, New York (2006)Google Scholar
  48. 48.
    Grätzer, G.: General Lattice Theory. Birkhauser, Basel (1998)zbMATHGoogle Scholar
  49. 49.
    Grätzer, G.: Universal Algebra, 2nd edn. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
  50. 50.
    Grätzer, G., Schmidt, E.T.: Characterizations of congruence lattices of abstract algebras. Acta Sci. Math. (Szeged) 24, 34–59 (1963)Google Scholar
  51. 51.
    Grätzer, G., Wehrung, F., et al.: Lattice Theory: Special Topics and Applications, vol. 2. Springer International (2016)Google Scholar
  52. 52.
    Halmos, P.R.: Algebraic Logic. Chelsea Publications, New York (1962)zbMATHGoogle Scholar
  53. 53.
    Hedlikova, J., Pulmannova, S.: Generalized difference posets and orthoalgebras. Acta Math. Univ. Comenianae 45, 247–279 (1996)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Huczynska, S., Ruskuc, N.: Well quasi-order in combinatorics: embeddings and homomorphisms. In: Surveys in Combinatorics 2015. London Mathematical Society Lecture Note Series, vol. 424, pp. 261–293. CUP, Cambridge (2015)Google Scholar
  55. 55.
    Iturrioz, L.: Rough sets and three-valued structures. In: Orłowska, E. (ed.) Logic at Work’99: Dedicated to Helena Rasiowa, pp. 596–603. Physica-Verlag, Heidelberg (1999)Google Scholar
  56. 56.
    Ivanova, T., Vakarelov, D.: Distributive mereotopology: extended distributive contact lattices. Ann. Math. Artif. Intell. 77(1–2), 3–41 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Iwinski, T.B.: Algebraic approach to rough sets. Bull. Pol. Acad. Sci. (Math.) 35(3–4), 673–683 (1987)Google Scholar
  58. 58.
    Järvinen, J.: The ordered set of rough sets. In: Tsumoto, S., et al. (eds.) RSCTC 2004. Lecture Notes in Artificial Intelligence, vol. 3066, pp. 49–58. Springer, Berlin (2004)Google Scholar
  59. 59.
    Järvinen, J.: Set operations for L-fuzzy sets. In: Kryszkiewicz, M., et al. (eds.) RSEISP’2007. Lecture Notes in Artificial Intelligence, vol. 4585, pp. 221–229. Springer, Berlin (2007)Google Scholar
  60. 60.
    Järvinen, J., Radeleczki, S.: Representation of Nelson algebras by rough sets determined by quasi-orders. Algebra Univers. 66, 163–179 (2011)zbMATHCrossRefGoogle Scholar
  61. 61.
    Järvinen, J., Radeleczki, S.: Irredundant coverings, tolerances, and related algebras. In: Mani, A., Düntsch, I., Cattaneo, G. (eds.) Algebraic Methods in General Rough Sets. Trends in Mathematics, pp. 417–457. Springer, Cham (2018)Google Scholar
  62. 62.
    Järvinen, J., Pagliani, P., Radeleczki, S.: Information completeness in Nelson algebras of rough sets induced by quasiorders. Stud. Logica 101, 1–20 (2012)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Jonnson, B.: Topics in Universal Algebra. Lecture Notes in Mathematics, vol. 250. Springer, Berlin (1972)Google Scholar
  64. 64.
    Jónsson, B., Tarski, A.: Boolean algebras with operators I. Am. J. Math. 73, 891–939 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Keisler, H.J.: Fundamentals of model theory. In: Barwise, J. (ed.) Handbook of Model Theory, pp. 47–113. Elsevier, New York (1993)Google Scholar
  66. 66.
    Khan, M.A., Banerjee, M.: Information systems and rough set approximations - an algebraic approach. In: Kuznetsov, S.O., et al. (eds.) Proceedings of PREMI’2011. Lecture Notes in Computer Science, vol. 6744, pp. 744–749. Springer, Berlin (2011)Google Scholar
  67. 67.
    Koh, K.: On the lattice of maximum-sized antichains of a finite poset. Algebra Univers. 17, 73–86 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Koh, K.M.: Maximum-sized antichains in minimal posets. Algebra Univers. 20, 217–228 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Komatu, A.: On a characterization of join homomorphic transformation lattice. Proc. Imp. Acad. Tokyo 19, 119–124 (1943)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Konikowska, B.: A query language allowing conditions of relational type in queries. Inf. Syst. 10(1), 113–125 (1985)zbMATHCrossRefGoogle Scholar
  71. 71.
    Koppelberg, S.: General Theory of Boolean Algebras, vol. 1. North-Holland, Amsterdam (1989)zbMATHGoogle Scholar
  72. 72.
    Kukiela, M.: On homotopy types of Alexandroff spaces, 1–24 (2009). ArXiv Preprint 0901.2621v2Google Scholar
  73. 73.
    Kumar, A., Banerjee, M.: Algebras of definable and rough sets in quasi order-based approximation spaces. Fund. Inform. 141(1), 37–55 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Kumar, A., Banerjee, M.: Kleene algebras and logic: Boolean and rough set representations, 3-valued, rough and perp semantics. Stud. Logica 105(3), 439–469 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Kung, J.P.S., Rota, G.C., Yan, C.H.: Combinatorics: The Rota Way. Cambridge University Press, Cambridge (2009)zbMATHCrossRefGoogle Scholar
  76. 76.
    Lapresta, J.L.G., Palmero, C.R.: Some algebraic characterization of preference structures. J. Interdiscip. Math. 7(2), 233–254 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Leutola, K., Nieminen, J.: Relations, coverings, hypergraphs and matroids. Czechoslov. Math. J. 33(108), 509–518 (1983)MathSciNetzbMATHGoogle Scholar
  78. 78.
    Li, X., Liu, S.: Matroidal approaches to rough set theory via closure operators. Int. J. Approx. Reason. 53, 512–527 (2012)Google Scholar
  79. 79.
    Malcev, A.I.: The Metamathematics of Algebraic Systems – Collected Papers. North Holland, Amsterdam (1971)Google Scholar
  80. 80.
    Mani, A.: Rough equalities from posets and rough difference orders. Fund. Inform. 53(3,4), 321–333 (2002)Google Scholar
  81. 81.
    Mani, A.: Super rough semantics. Fund. Inform. 65(3), 249–261 (2005)MathSciNetzbMATHGoogle Scholar
  82. 82.
    Mani, A.: Dialgebraic semantics of logics. Fund. Inform. 70(4), 333–350 (2006)MathSciNetzbMATHGoogle Scholar
  83. 83.
    Mani, A.: Esoteric rough set theory-algebraic semantics of a generalized VPRS and VPRFS. In: Skowron, A., Peters, J.F. (eds.) Transactions on Rough Sets VIII. Lecture Notes in Computer Science, vol. 5084, pp. 182–231. Springer, Berlin (2008)Google Scholar
  84. 84.
    Mani, A.: Integrated dialectical logics for relativised general rough set theory. In: International Conference on Rough Sets, Fuzzy Sets and Soft Computing, Agartala, 6 pp. (2009) (Refereed).
  85. 85.
    Mani, A.: Towards an algebraic approach for cover based rough semantics and combinations of approximation spaces. In: Sakai, H., et al. (eds.) RSFDGrC 2009. Lecture Notes in Artificial Intelligence, vol. 5908, pp. 77–84. Springer, Berlin (2009)Google Scholar
  86. 86.
    Mani, A.: Dialectics of counting and the mathematics of vagueness. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XV. Lecture Notes in Computer Science, vol. 7255, pp. 122–180. Springer, Berlin (2012)CrossRefGoogle Scholar
  87. 87.
    Mani, A.: Towards logics of some rough perspectives of knowledge. In: Suraj, Z., Skowron, A. (eds.) Intelligent Systems Reference Library Dedicated to the Memory of Professor Pawlak. Intelligent Systems Reference Library, vol. 43, pp. 419–444. Springer, Berlin (2013)Google Scholar
  88. 88.
    Mani, A.: Ontology, rough y-systems and dependence. Int. J. Comput. Sci. Appl. 11(2), 114–136 (2014). Special Issue of IJCSA on Computational IntelligenceGoogle Scholar
  89. 89.
    Mani, A.: Antichain based semantics for rough sets. In: Ciucci, D., Wang, G., Mitra, S., Wu, W. (eds.) RSKT 2015, pp. 319–330. Springer, Berlin (2015)Google Scholar
  90. 90.
    Mani, A.: Dreamy fuzzy sets. Technical report (2015).
  91. 91.
    Mani, A.: Generative rough-dreamy fuzzy dialectics. 1–23 (2018, Forthcoming)Google Scholar
  92. 92.
    Mani, A.: Algebraic semantics of Proto-transitive rough sets. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XX. Lecture Notes in Computer Science, vol. 10020, pp. 51–108. Springer, Berlin (2016)CrossRefGoogle Scholar
  93. 93.
    Mani, A.: Probabilities, dependence and rough membership functions. Int. J. Comput. Appl. 39(1), 17–35 (2016). Google Scholar
  94. 94.
    Mani, A.: Approximations from anywhere and general rough sets. In: Polkowski, L., et al. (eds.) Rough Sets-2, IJCRS 2017. Lecture Notes in Artificial Intelligence, vol. 10314, pp. 3–22. Springer, Cham (2017). Google Scholar
  95. 95.
    Mani, A.: Dialectical rough sets, parthood and figures of opposition. Int. J. Approx. Reason. 1–60 (2017).
  96. 96.
    Mani, A.: Generalized ideals and co-granular rough sets. In: Polkowski, L., et al. (eds.) Rough Sets, Part 2, IJCRS 2017. Lecture Notes in Artificial Intelligence, vol. 10314, pp. 23–42. Springer, Cham (2017). Google Scholar
  97. 97.
    Mani, A.: Knowledge and consequence in AC semantics for general rough sets. In: Wang, G., Skowron, A., Yao, Y., Ślȩzak, D. (eds.) Thriving Rough Sets—10th Anniversary - Honoring Prof Pawlak & 35 years of Rough Sets. Studies in Computational Intelligence Series, vol. 708, pp. 237–268. Springer, Cham (2017). Google Scholar
  98. 98.
    Mani, A.: Algebraic methods for granular rough sets. In: Mani, A., Düntsch, I., Cattaneo, G. (eds.) Algebraic Methods in General Rough Sets. Trends in Mathematics, pp. 157–337. Springer, Cham (2018)Google Scholar
  99. 99.
    McCrae, R.R., John, O.: An introduction to the five-factor model and its applications. J. Pers. 60, 175–215 (1992)CrossRefGoogle Scholar
  100. 100.
    Moszynska, M.: Selected Topics in Convex Geometry. Birkhauser, Basel (2006)zbMATHGoogle Scholar
  101. 101.
    ncatlab: Duality on ncatlab (2018).
  102. 102.
    Ore, O.: Galois connexions. Trans. Am. Math. Soc. 55, 493–513 (1944)MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    Orłowska, E.: Introduction: what you always wanted to know about rough sets. In: Orłowska, E. (ed.) Incomplete Information – Rough Set Analysis, pp. 1–20. Springer, Berlin (1998)CrossRefGoogle Scholar
  104. 104.
    Orłowska, E.: Duality via truth - semantics of lattice-based logics. J. Interest Group Philos. Logic (IGPL) 35, 467–490 (2006)MathSciNetGoogle Scholar
  105. 105.
    Orłowska, E., Rewitzky, I., Radzikowska, A.: Dualities for structures of applied logics. Studies in Logic, vol. 56. College Publications, London (2015)Google Scholar
  106. 106.
    Pagliani, P.: Rough set theory and logico-algebraic structures. In: Orłowska, E. (ed.) Incomplete Information: Rough Set Analysis, pp. 109–190. Physica Verlag, Heidelberg (1998)CrossRefGoogle Scholar
  107. 107.
    Pagliani, P.: Local classical behaviours in three-valued logics and connected systems. Part 1. J. Mult.-valued Logics 5, 327–347 (2000)Google Scholar
  108. 108.
    Pagliani, P.: Pretopologies and dynamic spaces. Fund. Inform. 59(2–3), 221–239 (2004)MathSciNetzbMATHGoogle Scholar
  109. 109.
    Pagliani, P.: On several algebraic aspects of rough set theory. In: Mani, A., Düntsch, I., Cattaneo, G. (eds.) Algebraic Methods in General Rough Sets. Trends in Mathematics, pp. 307–388. Springer, Cham (2018)Google Scholar
  110. 110.
    Pagliani, P., Chakraborty, M.: A Geometry of Approximation: Rough Set Theory: Logic, Algebra and Topology of Conceptual Patterns. Springer, Berlin (2008)Google Scholar
  111. 111.
    Pawlak, Z.: Some issues in rough sets. In: Skowron, A., Peters, J.F. (eds.) Transactions on Rough Sets-I, vol. 3100, pp. 1–58. Springer, Berlin (2004)zbMATHCrossRefGoogle Scholar
  112. 112.
    Peters, J.F.: Topology of Digital Images: Visual Pattern Discovery in Proximity Spaces. Intelligent Systems Reference Library, vol. 63. Springer, Berlin (2014). zbMATHCrossRefGoogle Scholar
  113. 113.
    Peters, J., Skowron, A., Stepaniuk, J.: Nearness of visual objects - application of rough sets in proximity spaces. Fund. Inform. 128, 159–176 (2013)MathSciNetzbMATHGoogle Scholar
  114. 114.
    Pfalfy, P., Pudlak, P.: Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups. Algebra Univers. 11, 22–27 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    Pigozzi, G., Tsoukias, A., Viappiani, P.: Preferences in artificial intelligence. Ann. Math. Artif. Intell. 77(3–4), 361–401 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Polkowski, L.: Mathematical morphology of rough sets. Bull. Pol. Acad. Sci. Math. 41(3), 241–252 (1993)MathSciNetzbMATHGoogle Scholar
  117. 117.
    Polkowski, L.: Rough Sets: Mathematical Foundations. Physica-Verlag, Heidelberg (2002)zbMATHCrossRefGoogle Scholar
  118. 118.
    Pomykala, J., Pomykala, J.A.: The stone algebra of rough sets. Bull. Pol. Acad. Sci. (Math.) 36, 495–508 (1988)Google Scholar
  119. 119.
    Pöschel, R.: Galois connections for operations and relations. In: Denecke, K., et al. (eds.) Galois Connections and Applications. Mathematics and Its Applications, vol. 565, pp. 231–258. Springer, Dordrecht (2004)zbMATHCrossRefGoogle Scholar
  120. 120.
    Priestley, H.A.: Representation of distributive lattices by means of ordered stone spaces. Bull. Lond. Math. Soc. 2, 186–190 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  121. 121.
    Pudlak, P., Tuma, J.: Every finite lattice can be embedded into a finite partition lattice. Algebra Univers. 10, 74–95 (1980)zbMATHCrossRefGoogle Scholar
  122. 122.
    Ramik, J., Vlach, M.: A non-controversial definition of fuzzy sets. In: Skowron, A., Peters, J.F., et al. (eds.) Transactions on Rough Sets II, vol. II, pp. 201–207. Springer, Berlin (2004)zbMATHCrossRefGoogle Scholar
  123. 123.
    Rasiowa, H.: An Algebraic Approach to Nonclassical Logics. Studies in Logic, vol. 78. North Holland, Warsaw (1974)Google Scholar
  124. 124.
    Rauszer, C.: Semi-Boolean algebras and their applications to intuitionistic logic with dual operations. Fundam. Math. 83, 219–249 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  125. 125.
    Roubens, M., Vincke, P.: Preference Modeling. Springer, Berlin (1985)zbMATHCrossRefGoogle Scholar
  126. 126.
    Rudeanu, S.: On ideals and filters in posets. Rev. Roumaine Math. Pures Appl. 60(2), 155–175 (2015)MathSciNetzbMATHGoogle Scholar
  127. 127.
    Ryabakov, V.: Admissible Rules of Inference. Elsevier, North Holland (1997)Google Scholar
  128. 128.
    Saha, A., Sen, J., Chakraborty, M.K.: Algebraic structures in the vicinity of pre-rough algebra and their logics II. Inf. Sci. 333, 44–60 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    Skowron, A., Stepaniuk, O.: Tolerance approximation spaces. Fund. Inform. 27, 245–253 (1996)MathSciNetzbMATHGoogle Scholar
  130. 130.
    Ślȩzak, D.: Rough sets and Bayes factor. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. Lecture Notes in Computer Science, vol. 3400, pp. 202–229. Springer, Berlin (2006)Google Scholar
  131. 131.
    Sontag, S.: As Consciousness Is Harnessed to Flesh: Journals and Notebooks, 1964–1980, 2nd edn. Farrar, Straus and Giroux, New York (2015)Google Scholar
  132. 132.
    Speer, T.: A short study of Alexandroff spaces. 1–10 (2007). ArXiv. Math 0708.2136v1Google Scholar
  133. 133.
    Stanley, R.P.: Enumerative Combinatorics Volume 2. Cambridge Studies in Advanced Mathematics, vol. 62. CUP, Cambridge (1999)Google Scholar
  134. 134.
    Steiner, A.: The lattice of topologies: structure and complementation. Trans. Am. Math. Soc. 122, 379–398 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  135. 135.
    Steiner, A.K.: On the lattice of topologies. In: Novak, J. (ed.) Proceedings of Third Prague Topological Symposium, 1971, pp. 411–415. Academia Publishing House, CAS, West Yorkshire (1972)Google Scholar
  136. 136.
    Stone, M.: The theory of representations for Boolean algebras. Trans. Am. Math. Soc. 40, 37–111 (1936)MathSciNetzbMATHGoogle Scholar
  137. 137.
    Stone, M.: Topological representations of distributive lattices and Brouwerian logics. Časopis Pěst. Mat. 67, 1–25 (1937)zbMATHGoogle Scholar
  138. 138.
    Tang, J., She, K., Zhu, W.: Matroidal structure of rough sets from the viewpoint of graph theory. J. Appl. Math. 2012, 1–27 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  139. 139.
    Umadevi, D.: On the completion of rough sets system determined by arbitrary binary relations. Fund. Inform. 137, 1–12 (2015)MathSciNetzbMATHGoogle Scholar
  140. 140.
    Vakarelov, D.: Non-classical negation in the works of Helena Rasiowa and their impact on the theory of negation. Stud. Logica 84(1), 105–127 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  141. 141.
    Vakarelov, D.: Actual existence predicate in mereology and mereotopology. In: Polkowski, L., et al. (eds.) Rough Sets, Part 2, IJCRS 2017, pp. 138–157. Springer, Cham (2017)Google Scholar
  142. 142.
    Venkataranasimhan, P.: Pseudo-complements in posets. Proc. Am. Math. Soc. 28, 9–17 (1971)MathSciNetCrossRefGoogle Scholar
  143. 143.
    Vetterlein, T.: BL-algebras and effect algebras. Soft Comput. 9, 557–564 (2005)zbMATHCrossRefGoogle Scholar
  144. 144.
    Wang, S., Zhu, W., Zhu, Q., Min, F.: Four matroidal structures of covering and their relationships with rough sets. Int. J. Approx. Reason. 54, 1361–1372 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  145. 145.
    Whitman, P.M.: Lattices, equivalence relations, and subgroups. Bull. Am. Math. Soc. 52(6), 507–522 (1946). MathSciNetzbMATHCrossRefGoogle Scholar
  146. 146.
    Yao, Y.Y.: Semantics of fuzzy sets in rough set theory. In: Skowron, A., Peters, J.F. (eds.) Transactions on Rough Sets II. Lecture Notes in Computer Science, vol. 3135, pp. 297–318. Springer, Berlin (2005)CrossRefGoogle Scholar
  147. 147.
    Yao, Y.Y., Lin, T.Y.: Generalizing rough sets using modal logics. Intell. Autom. Soft Comput. 2(2), 103–120 (1996)CrossRefGoogle Scholar
  148. 148.
    Yao, Y.Y., Yao, B.: Covering based rough set approximations. Inf. Sci. 200, 91–107 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  149. 149.
    Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, N., et al. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North Holland, Amsterdam (1979)Google Scholar
  150. 150.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90(2), 111–127 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  151. 151.
    Zhu, W.: Relationship among basic concepts in covering-based rough sets. Inf. Sci. 179, 2478–2486 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  152. 152.
    Zhu, W.: Relationship between general rough set based on binary relation and covering. Inf. Sci. 179, 210–225 (2009)zbMATHCrossRefGoogle Scholar
  153. 153.
    Zhu, W., Wang, F.Y.: Relationships among three types of covering rough sets. In: IEEE GRC, pp. 43–48 (2006)Google Scholar
  154. 154.
    Zhu, W., Wang, F.Y.: On three types of covering-based rough sets. IEEE Trans. Knowl. Data Eng. 19(9), 1131–1144 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • A. Mani
    • 1
  1. 1.Department of Pure MathematicsUniversity of CalcuttaKolkataIndia

Personalised recommendations