Advertisement

Algebraic Methods for Granular Rough Sets

Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

Granules are the building blocks of concepts of different types in soft computing and rough sets in particular. These granules can be defined in ways that are related to computing or reasoning strategies associated. In this broad perspective, at least three concepts of granular computing have been studied in the literature. The axiomatic approach in algebraic approaches to general rough sets had been introduced in an explicit formal way by the present author. Most of the results and techniques that are granular in this sense are considered critically in some detail in this research chapter by her. It is hoped that this work will serve as an important resource for all researchers in rough sets and allied fields.

Notes

Acknowledgements

I would like to thank Professor Yiyu Yao for being the second reader of this research chapter and for the many useful remarks that helped in improving the presentation of the chapter.

References

  1. 1.
    Abo-Tabl, A.: A comparison of two kinds of definitions of rough approximations based on a similarity relation. Inf. Sci. 181(12), 2587–2596 (2011). https://doi.org/10.1016/j.ins.2011.01.007 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Adaricheva, K., Gorbunov, V., Tumanova, V.: Join-semi-distributive lattices and convex geometries. Adv. Math. 173, 1–43 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Allam, A., Bakeir, M., Abo-Tabl, A.: Some methods for generating topologies by relations. J. Malaysian Math. Sci. Soc. 31, 35–45 (2008)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Avron, A., Konikowska, B.: Rough sets and 3-valued logics. Stud. Logica 90, 69–92 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Banerjee, M., Chakraborty, M.K.: Rough sets through algebraic logic. Fund. Inform. 28, 211–221 (1996)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Banerjee, M., Chakraborty, M.K.: Algebras from rough sets – an overview. In: Pal, S.K., et. al (eds.) Rough-Neural Computing, pp. 157–184. Springer, New York (2004)Google Scholar
  7. 7.
    Banerjee, M., Chakraborty, M.K., Bunder, M.: Some rough consequence logics and their interrelations. In: Skowron, A., Peters, J.F. (eds.) Transactions on Rough Sets VIII. Lecture Notes in Computer Science, vol. 5084, pp. 1–20. Springer, New York (2008)Google Scholar
  8. 8.
    Bianucci, D., Cattaneo, G., Ciucci, D.: Entropies and co-entropies of coverings with application to incomplete information systems. Fund. Inform. 75, 77–105 (2007)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Birkhoff, G., Bennet, M.K.: Convexity lattice of a poset. Order 2, 223–242 (1985)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bloch, I.: On links between mathematical morphology and rough sets. Pattern Recognit. 33, 1487–1496 (2000)CrossRefGoogle Scholar
  11. 11.
    Bonikowski, Z.: A certain conception of the calculus of rough sets. Notre Dame J. Formal Logic 33, 412–421 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bonikowski, Z., Bryniarski, E., Wybraniec-Skardowska, U.: Extensions and intentions in the rough set theory. Inf. Sci. 107, 149–167 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bosnjak, I., Madarasz, R.: On some classes of good quotient relations. Novisad J. Math 32(2), 131–140 (2002)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Breslov, R., Stavrova, A., Zapatrin, R.: Topological representation of posets, 1–11 (2000). arXiv:math/0001148 [math.GN]Google Scholar
  15. 15.
    Burmeister, P.: A Model-Theoretic Oriented Approach to Partial Algebras. Akademie-Verlag, Berlin (1986, 2002)Google Scholar
  16. 16.
    Cattaneo, G.: Abstract approximation spaces for rough set theory. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, vol. 2, pp. 59–98. Physica, Heidelberg (1998)Google Scholar
  17. 17.
    Cattaneo, G.: Algebraic methods for rough approximation spaces by lattice interior–closure operations. In: Mani, A., Düntsch, I., Cattaneo, G. (eds.) Algebraic Methods in General Rough Sets. Trends in Mathematics, pp. 16–125. Springer International, Basel (2018)Google Scholar
  18. 18.
    Cattaneo, G., Ciucci, D.: Algebraic structures related to MV-logics-1. Fund. Inform. 63, 331–355 (2004)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Cattaneo, G., Ciucci, D.: Algebras for rough sets and fuzzy logics. In: Transactions on Rough Sets 2. Lecture Notes in Computer Science, vol. 3100, pp. 208–252. Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Cattaneo, G., Ciucci, D.: Lattices with interior and closure operators and abstract approximation spaces. In: Peters, J.F., et al. (eds.) Transactions on Rough Sets X. Lecture Notes in Computer Science, vol. 5656, pp. 67–116. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Cattaneo, G., Ciucci, D.: The ortho-pair algebraic semantics of roughness. In: Mani, A., Düntsch, I., Cattaneo, G. (eds.) Algebraic Methods in General Rough Sets. Trends in Mathematics, pp. 580–674. Springer International, Basel (2018)Google Scholar
  22. 22.
    Cattaneo, G., Ciucci, D., Dubois, D.: Algebraic models of deviant modal operators based on De Morgan and Kleene lattices. Inf. Sci. 181, 4075–4100 (2011). https://doi.org/10.1016/J.INS.2011.05.008 MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Chajda, I.: Algebraic Theory of Tolerance Relations. Palacky University Press, Olomouc (1991)zbMATHGoogle Scholar
  24. 24.
    Chajda, I.: Ternary Deductive Systems. In: Pinus, A.G., Ponomaryov, K.N. (eds.) Algebra i Teoria Modelej, vol. 3, pp. 14–18. Novosibirsk STU, Novosibirsk (1998)Google Scholar
  25. 25.
    Chajda, I.: Generalized deductive systems in subregular varieties. Math. Bohemica 128(3), 319–324 (2003)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Chajda, I., Haviar, M.: Induced pseudo orders. Acta Univ. Palack. Olomou 30(1), 9–16 (1991). http://dml.cz/dml.cz/120249 MathSciNetzbMATHGoogle Scholar
  27. 27.
    Chajda, I., Niederle, J., Zelinka, B.: On existence conditions for compatible tolerances. Czech. Math. J 26, 304–311 (1976)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Chakraborty, M.K.: Membership function based rough set. Inf. Sci. 55, 402–411 (2014)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Ciucci, D.: Approximation algebra and framework. Fund. Inf. 94, 147–161 (2009)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Ciucci, D.: Back to the beginnings: Pawlak’s definitions of the terms information system and rough set. In: Wang, G., et al. (eds.) Thriving Rough Sets. Studies in Computational Intelligence, vol. 708, pp. 225–236. Springer International, Basel (2017)CrossRefGoogle Scholar
  31. 31.
    Comer, S.: On connections between information systems, rough sets, and algebraic logic. In: Rauszer, C. (ed.) Algebraic Methods in Logic and Computer Science, pp. 117–124. Polish Academy of Sciences, Warsaw (1993)zbMATHGoogle Scholar
  32. 32.
    Comer, S.: Perfect Extensions of Regular Double Stone Algebras. Algebra Univers. 34, 96–109 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Concilio, A.D., Guadagni, C., Peters, J., Ramanna, S.: Descriptive proximities I: properties and interplay between classical proximities and overlap, 1–12 (2016). arXiv:1609.06246v1Google Scholar
  34. 34.
    Czedli, G.: Factor lattices by tolerances. Acta. Sci. Math (Szeged) 44, 35–42 (1982)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Czelakowski, J., Jansana, R.: Weakly algebraizable logics. J. Symb. Log. 65(2), 641–668 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Czelakowski, J., Pigozzi, D.: Fregean Logics, pp. 1–72 (2003). PreprintGoogle Scholar
  37. 37.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)zbMATHCrossRefGoogle Scholar
  38. 38.
    Deer, L., Restrepo, M., Cornelis, C., Gómez, J.: Neighborhood operators for covering-based rough sets. Inf. Sci. 336, 21–44 (2016)zbMATHCrossRefGoogle Scholar
  39. 39.
    Dimitrov, B.: Some Obreshkov measures of dependence and their use. Comptes Rendus Acad Bulg. Sci. 63(1), 5–18 (2010)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Dimov, G., Vakarelov, D.: Contact algebras and region-based theory of space: a proximity approach I. Fund. Inf. 74(2–3), 209–249 (2006)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Slowinski, R. (ed.) Intelligent Decision Support – Handbook of Applications and Advances of Rough Sets, pp. 203–232. Kluwer Academic Publishers, Dordrecht (1992)CrossRefGoogle Scholar
  42. 42.
    Düntsch, I.: Rough sets and algebras of relations. In: Orłowska, E. (ed.) Incomplete Information and Rough Set Analysis, pp. 109–119. Physica, Heidelberg (1998)zbMATHGoogle Scholar
  43. 43.
    Düntsch, I., Gediga, G.: Rough Set Data Analysis: A Road to Non-invasive Knowledge Discovery. Methodos Publishers, Bangor (2000)Google Scholar
  44. 44.
    Düntsch, I., Orłowska, E.: Discrete duality for rough relation algebras. Fund. Inform. 127, 35–47 (2013). https://doi.org/10.3233/FI-2013-894 MathSciNetzbMATHGoogle Scholar
  45. 45.
    Düntsch, I., Vakarelov, D.: Region-based theory of discrete spaces: a proximity approach. Ann. Math. Artif. Intell. 49(1), 5–14 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Düntsch, I., Gediga, G., Orłowska, E.: Relational attribute systems. Int. J. Hum. Comput. Stud. 55(3), 293–309 (2001)zbMATHCrossRefGoogle Scholar
  47. 47.
    Düntsch, I., Gediga, G., Orłowska, E.: Relational attribute systems II. In: Peters, J.F., Skowron, A., Marek, V., Orłowska, E., Slowinski, R., Ziarko, W. (eds.) Transactions on Rough Sets VII. Lecture Notes in Computer Science, vol. 4400, pp. 16–35. Springer, New York (2007)zbMATHCrossRefGoogle Scholar
  48. 48.
    Estaji, A., Hooshmandasl, M., Davvaz, B.: Rough set theory applied to lattice theory. Inf. Sci. 200, 108–122 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Farinas, L., Orłowska, E.: DAL – a logic for data analysis. Theor. Comput. Sci. 36, 251–264 (1997)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Fashandi, H., Peters, J.F.: Mathematical morphology and rough sets. In: Pal, S.K., Peters, J.F. (eds.) Rough Fuzzy Image Analysis Foundations and Methodologies, Chap. 4, pp. 1–15. CRC Press, Boca Raton (2010)Google Scholar
  51. 51.
    Font, J.M., Jansana, R.: A General Algebraic Semantics for Sentential Logics, vol. 7. Association of Symbolic Logic, Poughkeepsie (2009)Google Scholar
  52. 52.
    Ganter, B., Meschke, C.: A formal concept analysis approach to rough data tables. In: Peters, J.F., et al. (eds.) Transactions on Rough Sets XIV. Lecture Notes in Computer Science, vol. 6600, pp. 37–61 (2011)zbMATHCrossRefGoogle Scholar
  53. 53.
    Gehrke, M., Walter, E.: The structure of rough sets. Bull. Pol. Acad. Sci (Math) 40, 235–245 (1992)Google Scholar
  54. 54.
    Grätzer, G.: General Lattice Theory. Birkhauser, Basel (1998)zbMATHGoogle Scholar
  55. 55.
    Greco, S., Pawlak, Z., Slowinski, R.: Can Bayesian measures be Useful for rough set decision making? Eng. Appl. Artif. Intell. 17, 345–361 (2004)CrossRefGoogle Scholar
  56. 56.
    Inuiguchi, M.: Generalisation of rough sets and rule extraction. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets-1. Lecture Notes in Computer Science, vol. 3100, pp. 96–116. Springer, New York (2004)Google Scholar
  57. 57.
    Iwinski, T.B.: Algebraic approach to rough sets. Bull. Pol. Acad. Sci (Math) 35(3–4), 673–683 (1987)Google Scholar
  58. 58.
    Iwinski, T.B.: Rough orders and rough concepts. Bull. Pol. Acad. Sci (Math) 37(3–4), 187–192 (1988)Google Scholar
  59. 59.
    Janicki, R.: Approximation of arbitrary binary relations by partial orders: classical and rough set models. In: Transactions on Rough Sets XIII. Lecture Notes in Computer Science, vol. 6499, pp. 17–38 (2011)zbMATHGoogle Scholar
  60. 60.
    Järvinen, J.: Lattice theory for rough sets. In: Peters, J.F., et al. (eds.) Transactions on Rough Sets VI. Lecture Notes in Computer Science, vol. 4374, pp. 400–498. Springer, New York (2007)CrossRefGoogle Scholar
  61. 61.
    Järvinen, J., Radeleczki, S.: Representation of Nelson algebras by rough sets determined by quasi-orders. Algebra Univers. 66, 163–179 (2011)zbMATHCrossRefGoogle Scholar
  62. 62.
    Järvinen, J., Radeleczki, S.: Representing regular pseudocomplemented kleene algebras by tolerance-based rough sets. J. Aust. Math. Soc. 1–22 (2017). https://doi.org/10.1017/S1446788717000283 MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Järvinen, J., Pagliani, P., Radeleczki, S.: Information completeness in Nelson algebras of rough sets induced by quasiorders. Stud. Logica 101(5), 1073–1092 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Kandil, A., Yakout, M., Zakaria, A.: New approaches of rough sets via ideals. In: John, S.J. (ed.) Handbook of Research on Generalized and Hybrid Set Structures and Applications for Soft Computing, pp. 247–264. IGI Global, Hershey (2016). https://doi.org/10.4018/978-1-4666-9798-0.ch012 CrossRefGoogle Scholar
  65. 65.
    Katrinak, T.: Construction of regular double p-algebras. Bull. R. Soc. Sci. Liege 43, 294–301 (1974)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Khan, M.A., Banerjee, M.: Formal reasoning with rough sets in multiple-source approximation spaces. Int. J. Approx. Reason. 49, 466–477 (2008)zbMATHCrossRefGoogle Scholar
  67. 67.
    Koh, K.: On the lattice of maximum-sized antichains of a finite poset. Algebra Univers. 17, 73–86 (1983)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Kumar, A., Banerjee, M.: Algebras of definable and rough sets in quasi order-based approximation spaces. Fund. Inform. 141(1), 37–55MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Kung, J.P.S., Rota, G.C., Yan, C.H.: Combinatorics-The Rota Way. Cambridge University Press, Cambridge (2009)zbMATHCrossRefGoogle Scholar
  70. 70.
    Li, T.J.: Rough approximation operators in covering approximation spaces. In: Greco, S., et al. (eds.) RSCTC 2006. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence), vol. 4259, pp. 174–182. Springer, New York (2006)Google Scholar
  71. 71.
    Lihova, J.: On convexly isomorphic posets. Czech. J. Math. 44(124), 135–147 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Lihova, J.: On posets With isomorphic interval posets. Czech. J. Math. 44(124), 67–80 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Lin, T.Y.: Neighbourhood systems- applications to qualitative fuzzy and rough sets. In: Wang, P.P., et al. (eds.) Advances in Machine Intelligence and Soft Computing’ Duke University, Durham’1997, pp. 132–155 (1997)Google Scholar
  74. 74.
    Lin, T.Y.: Granular computing-1: the concept of granulation and its formal model. Int. J. Granul. Comput. Rough Sets Intell. Syst. 1(1), 21–42 (2009)Google Scholar
  75. 75.
    Lin, T.Y., Liu, Q.: Rough approximate operators: axiomatic rough set theory. In: Ziarko, W. (ed.) Rough Sets, Fuzzy Sets and Knowledge Discovery, pp. 256–260. Springer, New York (1994)CrossRefGoogle Scholar
  76. 76.
    Lin, T.Y., Liu, Q.: First order rough logic-1. Fund. Inform. 27(2–3), 137–153 (1996)MathSciNetzbMATHGoogle Scholar
  77. 77.
    Liu, G.: The axiomatization of the rough set upper approximation operations. Fund. Inform. 69(23), 331–342 (2006)MathSciNetzbMATHGoogle Scholar
  78. 78.
    Liu, H., Ma, Y., Dai, X.: Theory of truth degrees in 3-valued formed systems of RST. In: Li, T., et al. (eds.) Proceedings of RSKT’2012. Lecture Notes in Artificial Intelligence, vol. 7414, pp. 49–54. Springer, New York (2012)Google Scholar
  79. 79.
    Ljapin, E.S.: Partial Algebras and Their Applications. Kluwer Academic, Dordrecht (1996)Google Scholar
  80. 80.
    Makinson, D.: General Patterns in Nonmonotonic Reasoning, vol. 3, pp. 35–110. Oxford University Press, Oxford (1994)Google Scholar
  81. 81.
    Makinson, D.: Bridges between classical and nonmonotonic logic. Log. J. IGPL 11, 69–96 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Mani, A.: Rough equalities from posets and rough difference orders. Fund. Inform. 53(3,4), 321–333 (2002)Google Scholar
  83. 83.
    Mani, A.: Super rough semantics. Fund. Inform. 65(3), 249–261 (2005)MathSciNetzbMATHGoogle Scholar
  84. 84.
    Mani, A.: Dialgebraic semantics of logics. Fund. Inform. 70(4), 333–350 (2006)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Mani, A.: Esoteric rough set theory-algebraic semantics of a generalized VPRS and VPRFS. In: Skowron, A., Peters, J.F. (eds.) Transactions on Rough Sets VIII. Lecture Notes in Computer Science, vol. 5084, pp. 182–231. Springer, New York (2008)Google Scholar
  86. 86.
    Mani, A.: Algebraic semantics of similarity-based bitten rough set theory. Fund. Inform. 97(1–2), 177–197 (2009)MathSciNetzbMATHGoogle Scholar
  87. 87.
    Mani, A.: Meaning, choice and similarity based rough set theory. In: ICLA’2009, pp. 1–12 (2009), arXiv:0905.1352. http://arxiv.org/abs/0905.1352
  88. 88.
    Mani, A.: Towards an algebraic approach for cover based rough semantics and combinations of approximation spaces. In: Sakai, H., et al. (eds.) RSFDGrC 2009. Lecture Notes in Artificial Intelligence, vol. 5908, pp. 77–84. Springer, New York (2009)Google Scholar
  89. 89.
    Mani, A.: Choice inclusive general rough semantics. Inform. Sci. 181(6), 1097–1115 (2011). http://dx.doi.org/10.1016/j.ins.2010.11.016 MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Mani, A.: Axiomatic approach to granular correspondences. In: Li, T., et al. (eds.) Proceedings of RSKT’2012. Lecture Notes in Artificial Intelligence, vol. 7414, pp. 482–487. Springer, New York (2012)Google Scholar
  91. 91.
    Mani, A.: Dialectics of counting and the mathematics of vagueness. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XV. Lecture Notes in Computer Science, vol. 7255, pp. 122–180. Springer, New York (2012)CrossRefGoogle Scholar
  92. 92.
    Mani, A.: Contamination-free measures and algebraic operations. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–8. IEEE, New York (2013).  https://doi.org/10.1109/FUZZ-IEEE.2013.6622521
  93. 93.
    Mani, A.: Dialectics of Knowledge Representation in a Granular Rough Set Theory. http://arxiv.org/abs/1212.6519. Refereed Conference Paper: ICLA’2013, Inst. Math. Sci. Chennai, pp. 1–12 (2013).
  94. 94.
    Mani, A.: Towards logics of some rough perspectives of knowledge. In: Suraj, Z., Skowron, A. (eds.) Intelligent Systems Reference Library Dedicated to the Memory of Prof. Pawlak ISRL, vol. 43, 419–444. Springer, New York (2013)Google Scholar
  95. 95.
    Mani, A.: Approximation dialectics of proto-transitive rough sets. In: Chakraborty, M.K., Skowron, A., Kar, S. (eds.) Facets of Uncertainties and Applications. Springer Proceedings in Mathematics and Statistics, vol. 125, pp. 99–109. Springer, New York (2013–2015)Google Scholar
  96. 96.
    Mani, A.: Algebraic Semantics of Proto-Transitive Rough Sets, 1st edn. (2014). arxiv:1410.0572. http://arxiv.org/abs/1410.0572
  97. 97.
    Mani, A.: Ontology, rough Y-systems and dependence. Int. J Comput. Sci. Appl. 11(2), 114–136 (2014). Special Issue of IJCSA on Computational IntelligenceGoogle Scholar
  98. 98.
    Mani, A.: Antichain based semantics for rough sets. In: Ciucci, D., Wang, G., Mitra, S., Wu, W. (eds.) RSKT 2015, pp. 319–330. Springer, New York (2015)Google Scholar
  99. 99.
    Mani, A.: Algebraic semantics of proto-transitive rough sets. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XX. Lecture Notes in Computer Science, vol. 10020, pp. 51–108. Springer, New York (2016)CrossRefGoogle Scholar
  100. 100.
    Mani, A.: On Deductive Systems of AC Semantics for Rough Sets, 1–12 (2016). arXiv:1610.02634v1 [math]Google Scholar
  101. 101.
    Mani, A.: Probabilities, dependence and rough membership functions. Int. J. Comput. Appl. 39(1), 17–35 (2016). https://doi.org/10.1080/1206212X.2016.1259800 Google Scholar
  102. 102.
    Mani, A.: Pure rough mereology and counting. In: WIECON, 2016, pp. 1–8. IEEXPlore (2016)Google Scholar
  103. 103.
    Mani, A.: Approximations from anywhere and general rough sets. In: Polkowski, L., et al. (eds.) Rough Sets-2, IJCRS, 2017. Lecture Notes in Artificial Intelligence, vol. 10314, pp. 3–22. Springer International, Basel (2017). https://doi.org/10.1007/978-3-319-60840-2 Google Scholar
  104. 104.
    Mani, A.: Dialectical rough sets, parthood and figures of opposition. Int. J. Approx. Reason. 1–60 (2017). http://arxiv.org/abs/1703.10251
  105. 105.
    Mani, A.: Generalized ideals and co-granular rough sets. In: Polkowski, L., et al. (eds.) Rough Sets, Part 2, IJCRS, 2017 . Lecture Notes in Artificial Intelligence, vol. 10314, pp. 23–42. Springer International, Basel (2017). https://doi.org/10.1007/978-3-319-60840-2.2
  106. 106.
    Mani, A.: Knowledge and consequence in AC semantics for general rough sets. In: Wang, G., Skowron, A., Yao, Y., Ślȩzak, D., Polkowski, L. (eds.) Thriving Rough Sets—-10th Anniversary - Honoring Prof Pawlak & 35 years of Rough Sets. Studies in Computational Intelligence Series, vol. 708, pp. 237–268. Springer International Publishing, Basel (2017). https://doi.org/10.1007/978-3-319-54966-8 Google Scholar
  107. 107.
    Mani, A.: Representation, duality and beyond. In: Mani, A., Düntsch, I., Cattaneo, G. (eds.) Algebraic Methods in General Rough Sets. Trends in Mathematics, pp. 459–552. Springer International, Basel (2018)Google Scholar
  108. 108.
    Markowsky, G.: Representations of posets and lattices by sets. Algebra Univers. 11, 173–192 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    Moore, E.F., Shannon, C.E.: Reliable circuits using less reliable relays-I, II. Bell Syst. Tech. J. 262 191–208, 281–297 (1956)MathSciNetzbMATHGoogle Scholar
  110. 110.
    Nagy, D., Mihalydeak, T., Aszalos, L.: Similarity based rough sets. In: Rough Sets, IJCRS’2017. Lecture Notes in Artificial Intelligence, vol. 10314, pp. 94–107. Springer International, Basel (2017)CrossRefGoogle Scholar
  111. 111.
    Novotny, M.: Dependence spaces of information systems. In: Orłowska, E. (ed.) Incomplete Information: Rough Set Analysis, pp. 193–246. Springer, New York (1998)CrossRefGoogle Scholar
  112. 112.
    Novotny, M., Pawlak, Z.: Characterization of rough top and bottom equalities. Bull. Pol. Acad. Sci (Math) 33(1-2), 99–104 (1985)Google Scholar
  113. 113.
    Orłowska, E.: Duality via truth - semantics of lattice-based logics. J. Interest Group Philos Log. (IGPL) 35, 467–490 (2006)Google Scholar
  114. 114.
    Orłowska, E., Pawlak, Z.: Logical Foundations of Knowledge Representation - Reports of The Computing Centre. Technical report, Polish Academy of Sciences (1984)Google Scholar
  115. 115.
    Orłowska, E., Rewitzky, I.: Discrete duality and its application to reasoning with incomplete information. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP’2007. Lecture Notes in Artificial Intelligence, vol. 4585, pp. 51–56. Springer, New York (2007)Google Scholar
  116. 116.
    Orłowska, E., Rewitzky, I., Radzikowska, A.: Dualities for Structures of Applied Logics. Studies in Logic, vol. 56. College Publications, London (2015)Google Scholar
  117. 117.
    Pagliani, P.: Rough set theory and logico-algebraic structures. In: Orłowska, E. (ed.) Incomplete Information: Rough Set Analysis, pp. 109–190. Physica Verlag, Heidelberg (1998)CrossRefGoogle Scholar
  118. 118.
    Pagliani, P.: Local classical behaviours in three-valued logics and connected systems. Part 1. J. Mult. Valued Log. 5, 327–347 (2000)Google Scholar
  119. 119.
    Pagliani, P.: Local classical behaviours in three-valued logics and connected systems. Part 2. J. Mult. Valued Log. 6, 369–392 (2001)Google Scholar
  120. 120.
    Pagliani, P.: Pretopologies and dynamic spaces. Fund. Inform. 59(2–3), 221–239 (2004)MathSciNetzbMATHGoogle Scholar
  121. 121.
    Pagliani, P.: Covering rough sets and formal topology – a uniform approach through intensional and extensional constructors. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XX. Lecture Notes in Computer Science, vol. 10020, pp. 109–145. Springer, New York (2016). https://doi.org/10.1007/978-3-662-53611-7 CrossRefGoogle Scholar
  122. 122.
    Pagliani, P.: On several algebraic aspects of rough set theory. In: Mani, A., Düntsch, I., Cattaneo, G. (eds.) Algebraic Methods in General Rough Sets. Trends in Mathematics, pp. 307–388. Springer International, Basel (2018)Google Scholar
  123. 123.
    Pagliani, P., Chakraborty, M.K.: Formal topology and information systems. In: Transactions on Rough Sets VI, pp. 253–297. Springer, New York (2007)Google Scholar
  124. 124.
    Pagliani, P., Chakraborty, M.: A Geometry of Approximation: Rough Set Theory: Logic, Algebra and Topology of Conceptual Patterns. Springer, Berlin (2008)Google Scholar
  125. 125.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 18, 341–356 (1982)zbMATHCrossRefGoogle Scholar
  126. 126.
    Pawlak, Z.: Rough logic. Bull. Pol. Acad. Sci (Tech) 35, 253–258 (1987)Google Scholar
  127. 127.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Dodrecht (1991)zbMATHCrossRefGoogle Scholar
  128. 128.
    Pawlak, Z.: Decision tables and decision spaces. In: Proceedings of the 6th International Conference on Soft Computing and Distributed Processing (SCDP’2002) (2002)Google Scholar
  129. 129.
    Pawlak, Z.: Some issues in rough sets. In: Skowron, A., Peters, J.F. (eds.) Transactions on Rough Sets-I, vol. 3100, pp. 1–58. Springer, New York (2004)zbMATHCrossRefGoogle Scholar
  130. 130.
    Perry, B., Dockett, S.: Young children’s access to powerful mathematical ideas. In: English, L. (ed.) Handbook of International Research in Mathematics Education, pp. 81–112. LEA, Mahwah (2002)Google Scholar
  131. 131.
    Peters, J.F., Wasilewski, P.: Foundations of near sets. Inf. Sci. 179, 3091–3109 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    Peters, J., Skowron, A., Stepaniuk, J.: Nearness of visual objects - application of rough sets in proximity spaces. Fund. Inform. 128, 159–176 (2013)MathSciNetzbMATHGoogle Scholar
  133. 133.
    Polkowski, L.: Mathematical morphology of rough sets. Bull. Pol. Acad. Sci. Math. 41(3), 241–252 (1993)MathSciNetzbMATHGoogle Scholar
  134. 134.
    Polkowski, L.: Rough Sets: Mathematical Foundations. Physica-Verlag, Heidelberg (2002)zbMATHCrossRefGoogle Scholar
  135. 135.
    Polkowski, L.: Rough mereology as a link between rough and fuzzy set theories. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets. Lecture Notes in Computer Science, vol. 3135, pp. 253–277. Springer, New York (2004)CrossRefGoogle Scholar
  136. 136.
    Polkowski, L.: Approximate Reasoning by Parts. Springer, New York (2011)CrossRefGoogle Scholar
  137. 137.
    Polkowski, L., Skowron, A.: Rough mereology: a new paradigm for approximate reasoning. Int. J. Approx. Reason. 15(4), 333–365 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  138. 138.
    Pomykala, J.A.: Approximation operations in approximation space. Bull. Pol. Acad. Sci. Math. (9-10), 653–662 (1987)Google Scholar
  139. 139.
    Pomykala, J.A.: Approximation, Similarity and Rough Constructions. Technical report, CT-93-07, ILLC, Univ of Amsterdam (1993)Google Scholar
  140. 140.
    Pomykala, J., Pomykala, J.A.: The stone algebra of rough sets. Bull. Pol. Acad. Sci. (Math.) 36, 495–508 (1988)Google Scholar
  141. 141.
    Rauszer, C.: Rough logic for multi-agent systems. In: Masuch, M., Polos, L. (eds.) Logic at Work’92. Lecture Notes in Computer Science, vol. 808, pp. 151–181. Springer, Dordrecht (1991)Google Scholar
  142. 142.
    Saha, A., Sen, J., Chakraborty, M.K.: Algebraic structures in the vicinity of pre-rough algebra and their logics II. Inform. Sci. 333, 44–60 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  143. 143.
    Samanta, P., Chakraborty, M.K.: Covering based approaches to rough sets and implication lattices. In: Sakai, H., et al. (eds.) RSFDGrC ’2009. Lecture Notes in Artificial Intelligence, vol. 5908, pp. 127–134. Springer, New York (2009)Google Scholar
  144. 144.
    Samanta, P., Chakraborty, M.K.: Interface of rough set systems and ModaLogics: a survey. In: Transactions on Rough Sets XIX. Lecture Notes in Computer Science, vol. 8988, pp. 114–137 (2015)zbMATHGoogle Scholar
  145. 145.
    Sambin, G.: Intuitionistic formal spaces - a first communication. In: Skordev, D. (ed.) Mathematical Logic and Its Applications, pp. 187–204. Plenum Press, New York (1987). http://www.math.unipd.it/~sambin/txt/ifs87-97.pdf CrossRefGoogle Scholar
  146. 146.
    Sambin, G., Gebellato, S.: A preview of the basic picture: a new perspective on formal topology. In: Altenkirch, T., Reus, B., Naraschewski, W. (eds.) Types1998. Lecture Notes in Computer Science, vol. 1657, pp. 194–208. Springer, New York (1999). https://doi.org/10.1007/3-540-48167-2 zbMATHGoogle Scholar
  147. 147.
    Schnabel, Z.: The estimation of the total fish population of a lake. Am. Math. Mon. 45, 348–352 (1938)MathSciNetzbMATHGoogle Scholar
  148. 148.
    Seber, G.: A review of estimating animal abundance. Biometrics 42, 267–292 (1986)CrossRefGoogle Scholar
  149. 149.
    Semenova, M., Wehrung, F.: Sublattices of lattices of order-convex sets-2. Int. J. Algebra Comput. 13(5), 543–564 (2003)zbMATHCrossRefGoogle Scholar
  150. 150.
    Semenova, M., Wehrung, F.: Sublattices of lattices of order-convex sets-1. J. Algebra 277(2), 825–860 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  151. 151.
    Semenova, M., Wehrung, F.: Sublattices of lattices of order-convex sets-3. Int. J. Algebra Comput. 14(3), 357–387 (2004)zbMATHCrossRefGoogle Scholar
  152. 152.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)MathSciNetzbMATHCrossRefGoogle Scholar
  153. 153.
    Siggers, M.: On the representation of finite distributive lattices 1, 1–17 (2014). arXiv:1412.0011 [math]Google Scholar
  154. 154.
    Skowron, A., Polkowski, L.: Analytical morphology: mathematical morphology of decision tables. Fund. Inform. 27(2–3) (1996)Google Scholar
  155. 155.
    Skowron, A., Stepaniuk, O.: Tolerance approximation spaces. Fund. Inform. 27, 245–253 (1996)MathSciNetzbMATHGoogle Scholar
  156. 156.
    Ślȩzak, D.: Rough sets and Bayes factor. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III, Lecture Notes in Computer Science, vol. 3400, pp. 202–229. Springer, New York (2006)Google Scholar
  157. 157.
    Ślȩzak, D., Wasilewski, P.: Granular sets - foundations and case study of tolerance spaces. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. Lecture Notes in Computer Science, vol. 4482, pp. 435–442. Springer, New York (2007)Google Scholar
  158. 158.
    Slowinski, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Trans. Knowl. Data Eng. 12, 331–336 (2000)CrossRefGoogle Scholar
  159. 159.
    Tripathy, B.K.: On approximation of classifications. In: Rough Set Theory: SCI 174. Rough Equalities and Equivalences, pp. 85–133. Springer, New York (2009)Google Scholar
  160. 160.
    Wasilewski, P., Ślȩzak, D.: Foundations of rough sets from vagueness perspective. In: Hassanien, A., et al. (eds.) Rough Computing: Theories, Technologies and Applications. Information Science Reference, pp. 1–37. IGI Global, Hershey (2008)Google Scholar
  161. 161.
    Wolski, M.: RST, ontological systems, entailment relations and approximation operators. In: Transactions on Rough Sets X. Lecture Notes in Computer Science, vol. 5656, pp. 1–14 (2009)zbMATHGoogle Scholar
  162. 162.
    Yang, J.T., Li, Q.: Reduction about approximation spaces of covering generalized rough sets. Int. J. Approx. Reason. 51, 335–345 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  163. 163.
    Yao, Y.Y.: Two views of the theory of rough sets in finite universes. Int. J. Approx. Reason. 15, 291–317 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  164. 164.
    Yao, G.T.: Constructions and algebraic methods of the theory of rough sets. Inform. Sci. 109, 21–47 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  165. 165.
    Yao, Y.Y.: Relational interpretation of neighbourhood operators and rough set approximation operators. Inform. Sci. 111, 239–259 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  166. 166.
    Yao, Y.Y.: Information granulation and rough set approximation. Int. J. Intell. Syst. 16, 87–104 (2001)zbMATHCrossRefGoogle Scholar
  167. 167.
    Yao, Y.Y.: On generalizing rough set theory. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing: RSFDGrC’2009. Lecture Notes in Artificial Intelligence, vol. 2639, pp. 44–51. Springer, New York (2003)CrossRefGoogle Scholar
  168. 168.
    Yao, Y.Y.: Probabilistic approach to rough sets. Expert Syst. 20(5), 287–297 (2003)CrossRefGoogle Scholar
  169. 169.
    Yao, Y.Y.: The art of granular computing. In: Kryszkiewicz, M., et al. (eds.) RSEISP’2007. Lecture Notes in Artificial Intelligence, vol. 4585, pp. 101–112. Springer, New York (2007)Google Scholar
  170. 170.
    Yao, Y.Y.: Probabilistic rough set approximations. Int. J. Approx. Reason. 49, 255–271 (2008)zbMATHCrossRefGoogle Scholar
  171. 171.
    Yao, Y.Y.: Two sides of the theory of rough sets. Knowl. Based Syst. 80, 67–77 (2015)CrossRefGoogle Scholar
  172. 172.
    Yao, Y.Y., Chen, Y.: Subsystem based generalizations of rough set approximations. In: Proceedings of the International Symposium on Foundations of Intelligent Systems’2005. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence), vol. 3488, pp. 210–218 (2005)Google Scholar
  173. 173.
    Yao, Y.Y., Lin, T.Y.: Generalizing rough sets using modal logics. Intell. Autom. Soft Comput. 2(2), 103–120 (1996)CrossRefGoogle Scholar
  174. 174.
    Yao, Y.Y., Yao, B.X.: Covering based rough set approximations. Inform. Sci. 200, 91–107 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  175. 175.
    Yin, X., Düntsch, I., Gediga, G.: Quadtree representation and compression of spatial data. In: Transactions on Rough Sets , XIII. Lecture Notes in Computer Science, vol. 6499, pp. 207–239 (2011)CrossRefGoogle Scholar
  176. 176.
    Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, N., et al. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North Holland, Amsterdam (1979)Google Scholar
  177. 177.
    Zakowski, W.: Approximation in the space (U, π). Demonstration Math. XVI, 761–769 (1983)Google Scholar
  178. 178.
    Zhang, X., Dai, J., Yu, Y.: On the union and intersection operations of rough sets based on various approximation spaces . Inform. Sci. 292, 214–229 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  179. 179.
    Zhu, W.: Topological approaches to covering rough sets. Inform. Sci. 177, 1499–1508 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  180. 180.
    Zhu, W.: Relationship among basic concepts in covering-based rough sets. Inform. Sci. 179, 2478–2486 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  181. 181.
    Zhu, W.: Relationship between general rough set based on binary relation and covering. Inform. Sci. 179, 210–225 (2009)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • A. Mani
    • 1
  1. 1.Department of Pure MathematicsUniversity of CalcuttaKolkataIndia

Personalised recommendations