Algebraic Methods for Rough Approximation Spaces by Lattice Interior–Closure Operations

  • Gianpiero Cattaneo
Part of the Trends in Mathematics book series (TM)


This chapter deals with the abstract approach to rough sets theory through the equational notion of closure operator in the context of lattice theory, with the associated notion of internal operator as not-closure-not. The involved lattice structures are not necessarily distributive to allow the development of rough theories in the so-called logical-algebraic context of Quantum Mechanics, based on non-distributive lattices of orthomodular type. The chapter is organized into four parts.

In Part I the more general lattice notion of closure operator is introduced, and the induced notion of interior operator is discussed. It is shown that this lattice approach of the inner-closure pairs is categorically equivalent to the non-equational abstract notion of approximation space based on the lower-upper approximation of each lattice element.

Part II deals with three variations of closure operators called respectively, from the more general to the stronger one, as Tarski, Kuratowski and Halmos closures. A characterization of this last is given in terms of Brouwer Zadeh lattice structure.

Part III provides an interpretation of the pairs of internal-closure operators in terms of pairs of necessity-possibility operators in the context of suitable modal logics. A Kripke-like semantic of such kinds of logics is also provided based on a set of possible worlds. The usual approach to the concrete theory of rough sets through Pawlak information systems is investigated in this context.

Part IV treats these internal-closure operators in context of Łukasiewicz algebraic structures, stronger than the Halmos ones. It is shown that the usual fuzzy sets theory is a model of such structures. Finally, the correlation between Łukasiewicz algebraic structures and Nelson algebras is discussed.


  1. 1.
    Alexandrov, P.: Discrete Räume. Math. Sb. 2, 501–518 (1937)Google Scholar
  2. 2.
    Appert, A.: Proprietes des espaces abstraits les plus generaux. Acta Sci. Ind. 145. Paris (1934)Google Scholar
  3. 3.
    Arenas, F.G.: Alexandroff spaces. Acta Math. Univ. Comenianae 68, 17–25 (1999)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Becchio, D.: Sur les definitions des algebres trivalentes de Łukasiewicz donnees par A. Monteiro. Log. Analyse 16, 339–344 (1973)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Becchio, D.: Logiques trivalentes de Łukasiewicz. Ann. Sci. Univ. Clemont–Ferrand 2 66, 33–83 (1978)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bialynicki-Birula, A., Rasiowa, H.: On the representation of quasi–Boolean algebras. Bull. Acad. Pol. Sci. Cl III 5, 259–261 (1957)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Birkhoff, G.: On the combinations of topologies. Fundam. Math. 26, 156–166 (1936)zbMATHCrossRefGoogle Scholar
  8. 8.
    Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publication, vol. XXV, 3rd edn. American Mathematical Society, Providence (1967). First edition (1940), Second (revisited) edition (1948)Google Scholar
  9. 9.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Blackburn, P., de Rije, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  11. 11.
    Borowski, L. (ed.): Selected Works of J. Łukasiewicz. North-Holland, Amsterdam (1970)Google Scholar
  12. 12.
    Bugajska, K., Bugajski, S.: The lattice structure of quantum logics. Ann. Inst. Henri Poincaré XIX, 333–340 (1973)Google Scholar
  13. 13.
    Cattaneo, G.: Quantum fuzzy-intuitionistic (Brouwer-Zadeh) posets. In: The Second Winter School on Measure Theory, Liptovsky Jan, pp. 7–12 (1990)Google Scholar
  14. 14.
    Cattaneo, G.: Abstract approximation spaces for rough theories. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1, pp. 59–98. Physica–Verlag, Heidelberg (1998)Google Scholar
  15. 15.
    Cattaneo, G.: An investigation about rough set theory: some foundational and mathematical aspects. Fund. Inform. 108, 197–221 (2011)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Cattaneo, G.: The lattice topological approach to roughness theory by approximation spaces. In: Bhaumik, R.N. (ed.) Proc. International Conference on Rough Sets, Fuzzy sets and Soft Computing, pp. 9–74. Department of Mathematics, Tripura University (India), Suryamaninagar, Tripura (2011)Google Scholar
  17. 17.
    Cattaneo, G., Ciucci, D.: Basic intuitionistic principles in fuzzy set theories and its extensions (a terminological debate on Atanassov IFS). Fuzzy Sets Syst. 157, 3198–3219 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Cattaneo, G., Ciucci, D.: Some Methodological Remarks About Categorical Equivalence in the Abstract Approach to Roughness - Part I, pp. 277–283. Springer, Berlin (2006)CrossRefGoogle Scholar
  19. 19.
    Cattaneo, G., Ciucci, D.: Some Methodological Remarks About Categorical Equivalence in the Abstract Approach to Roughness. Part II, pp. 284–289. Springer, Berlin (2006)zbMATHCrossRefGoogle Scholar
  20. 20.
    Cattaneo, G., Ciucci, D.: A Hierarchical Lattice Closure Approach to Abstract Approximation Spaces, pp. 363–370. Springer, Berlin (2008)Google Scholar
  21. 21.
    Cattaneo, G., Ciucci, D.: Lattices with interior and closure operators and abstract approximation spaces. In: Peters, J.F., et al. (eds.) Foundations of Rough Sets. LNCS – Transactions on Rough Sets X, vol. 5656, pp. 67–116. Springer, Berlin (2009)CrossRefGoogle Scholar
  22. 22.
    Cattaneo, G., Marino, G.: Brouwer-Zadeh posets and fuzzy set theory. In: Di Nola, A., Ventre, A. (eds.) Proceedings of the 1st Napoli Meeting on Mathematics of Fuzzy Systems, Napoli, pp. 34–58 (1984)Google Scholar
  23. 23.
    Cattaneo, G., Nisticò, G.: Partially ordered structures of fuzzy projections in Hilbert spaces. In: Di Nola, A., Ventre, A. (eds.) Proceedings of the 1st Napoli Meeting on Mathematics of Fuzzy Systems, Napoli, pp. 59–71 (1984)Google Scholar
  24. 24.
    Cattaneo, G., Nisticò, G.: Semantical structures for fuzzy logics: an introductory approach. In: Di Nola, A., Ventre, A. (eds.) Mathematics of Fuzzy Systems. IRS, vol. 88, pp. 33–50. Verlag TÜV, Rheinland (1986)Google Scholar
  25. 25.
    Cattaneo, G., Nisticò, G.: Brouwer-Zadeh posets and three valued Łukasiewicz posets. Fuzzy Sets Syst. 33, 165–190 (1989)zbMATHCrossRefGoogle Scholar
  26. 26.
    Cattaneo, G., Dalla Chiara, M.L., Giuntini, R.: Fuzzy intuitionistic quantum logics. Stud. Logica 52, 419–442 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Cattaneo, G., Dalla Chiara, M.L., Giuntini, R.: Some algebraic structures for many-valued logics. Tatra Mt. Math. Publ. 15, 173–196 (1998). Special Issue: Quantum Structures II, Dedicated to Gudrun KalmbachGoogle Scholar
  28. 28.
    Cattaneo, G., Giuntini, R., Pulmannová, S.: Pre-BZ and degenerate BZ posets: applications to fuzzy sets and unsharp quantum theories. Found. Phys. 30, 1765–1799 (2000)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Cattaneo, G., Dalla Chiara, M., Giuntini, R., Paoli, F.: Quantum logic and nonclassical logics. In: Engesser, K., Gabbay, D.M., Lehmann, D. (eds.) Handbook of Quantum Logic and Quantum Structures, pp. 127–226. Elsevier, North-Holland (2009)zbMATHCrossRefGoogle Scholar
  30. 30.
    Cattaneo, G., Ciucci, D., Dubois, D.: Algebraic models of deviant modal operators on de Morgan and Kleene algebras. Inf. Sci. 181, 4075–4100 (2011)zbMATHCrossRefGoogle Scholar
  31. 31.
    Čech, E.: Topological Spaces. Interscience Publisher, London (1966). Revised editionGoogle Scholar
  32. 32.
    Chellas, B.F.: Modal Logic, An Introduction. Cambridge University Press, Cambridge (1995). First published 1980. Reprinted 1984, 1988, 1990, 1993Google Scholar
  33. 33.
    Cignoli, R.: Boolean elements in Łukasiewicz algebras. I. Proc. Jpn. Acad. 41, 670–675 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Cignoli, R.: Moisil algebras. Notas de Logica Matematica 27, Univ. Nacional del Sur (1970)Google Scholar
  35. 35.
    Cignoli, R., Monteiro, A.: Boolean elements in Łukasiewicz algebras. II. Proc. Jpn. Acad. 41, 676–680 (1965)zbMATHCrossRefGoogle Scholar
  36. 36.
    Cohen, D.W.: An Introduction to Hilbert Spaces and Quantum Logic. Springer, Berlin (1989)zbMATHCrossRefGoogle Scholar
  37. 37.
    Cohn, P.M.: Universal Algebra. Harper and Row, New York (1965)zbMATHGoogle Scholar
  38. 38.
    Düntsch, I., Gediga, G.: Approximation operators in qualitative data analysis. In: TARSKI Proceedings. Lecture Notes in Computer Science, vol. 2929, pp. 214–230. Springer, Berlin (2003)zbMATHGoogle Scholar
  39. 39.
    Düntsch, I., Orlowska, E., Wang, H.: Algebras of approximation regions. Fund. Inform. 46, 71–82 (2001)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Düntsch, I., Orlowska, E., Wang, H.: A relational logic for spatial contact based on rough set approximation. Fund. Inform. 148, 191–206 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Erné, M.: Closure. Contemp. Math. 486, 163–238 (2009)CrossRefGoogle Scholar
  42. 42.
    Everett, C.J.: Closure operators and Galois theory in lattices. Trans. Am. Math. Soc. 55, 514–525 (1944)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Finch, P.D.: On the structure of quantum logic. J. Symb. Log. 34, 275–282 (1969)zbMATHCrossRefGoogle Scholar
  44. 44.
    Frink, O.: New algebras of logic. Am. Math. Mon. 45, 210–219 (1938)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)zbMATHCrossRefGoogle Scholar
  46. 46.
    Garden, R.W.: Modern Logic and Quantum Mechanics. Adam Hilger Ltd., Bristol (1984)zbMATHGoogle Scholar
  47. 47.
    Gediga, G., Düntsch, I.: Modal-style operators in qualitative data analysis. In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 155–162 (2002)Google Scholar
  48. 48.
    Gediga, G., Düntsch, I.: Skill set analysis in knowledge structures. Br. J. Math. Stat. Psychol. 55, 361–384 (2002)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Goldblatt, R.I.: Semantic analysis of orthologic. J. Philos. Log. 3, 19–35 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Goldblatt, R.I.: The Stone space of an ortholattice. Bull. London Math. Soc. 7, 45–48 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Halmos, P.R.: Introduction to Hilbert Space, and the Theory of Spectral Multiplicity. Chelsea, New York (1951). Second edition (1957)Google Scholar
  52. 52.
    Halmos, P.R.: The basic concepts of algebraic logic. Am. Math. Mon. 53, 363–387 (1956)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Halmos, P.R.: Algebraic Logic. Chelsea, New York (1962)zbMATHGoogle Scholar
  54. 54.
    Hardegree, G.M.: The conditional in abstract and concrete quantum logic. In: Hooker, C.A. (ed.) Logico–Algebraic Approach to Quantum Mechanics. II, pp. 49–108. D. Reidel, Dordrecht (1979)CrossRefGoogle Scholar
  55. 55.
    Hardegree, G.M.: Material implication in orthomodular (and Boolean) lattices. Notre Dame J. Modal Logic 22, 163–182 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Helmberg, G.: Introduction to Spectral Theory in Hilbert Spaces. Series in Applied Mathematics and Mechanics, vol. 6. North-Holland, Amsterdam (1975). First edition (1969)Google Scholar
  57. 57.
    Heyting, A.: A propos d’un article de MM. Barzin et Errera. L’einsegnement Math. 30, 121–122 (1931)zbMATHGoogle Scholar
  58. 58.
    Heyting, A.: Intuitionism: An Introduction, 2nd edn. North-Holland, Amsterdam (1966). First edition (1956)Google Scholar
  59. 59.
    Iwinski, T.B.: Algebraic approach for rough sets. Bull. Pol. Acad. Sci. Math. 35, 673–683 (1987)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Jauch, J.M.: Foundations of Quantum Mechanics. Addison-Wesley, Reading (1968)zbMATHGoogle Scholar
  61. 61.
    Kalman, J.A.: Lattices with involution. Trans. Am. Math. Soc. 87, 485–491 (1958)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Kelley, J.L.: General Topology. Springer, New York (1955). Second edition (1957) by Van NostrandGoogle Scholar
  63. 63.
    Kotas, J.: An axiom system for the modular logic. Stud. Logica XXI, 17–37 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Kripke, S.A.: Semantical analysis of modal logic I. Normal modes propositional calculi. Z. Math. Log. Grund. Math. 9, 67–96 (1963)zbMATHCrossRefGoogle Scholar
  65. 65.
    Kuratowski, C.: Sur l’opération \(\overline A\) de l’analysis situs. Fundam. Math. 3, 182–199 (1922)Google Scholar
  66. 66.
    Kuratowski, C.: Topologie. I. Monografie Matematyczne, Warszawa (1933). Other editions (1948 and 1958)Google Scholar
  67. 67.
    Kuratowski, C.: Topologie. II. Monografie Matematyczne, Warszawa (1961)Google Scholar
  68. 68.
    Lane, S.M.: Categories for the Working Mathematicians. Graduate Text in Mathematics, vol. 5. Springer, Berlin (1971)zbMATHCrossRefGoogle Scholar
  69. 69.
    Lewis, C.I., Langford, C.H.: Symbolic Logic. Centuty Co., New York (1932)zbMATHGoogle Scholar
  70. 70.
    Łukasiewicz, J.: O logice trójwartościowej. Ruch Filozoficzny 5, 170–171 (1920). English version: On three–valued logic, in [11], p. 87Google Scholar
  71. 71.
    Mackey, G.W.: Quantum mechanics and Hilbert spaces. Am. Math. Mon. 64, 45–57 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    McKinsey, J.C.C.: A solution to decision problem for the Lewis systems S2 and S4 with an application to topology. J. Symb. Log. 6, 117–134 (1941)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    McKinsey, J.C.C., Tarski, A.: The algebra of topology. Ann. Math. 45, 141–191 (1944)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    McKinsey, J.C.C., Tarski, A.: On closed elements in closure algebras. Ann. Math. 47, 122–162 (1946)MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Moisil, G.C.: Recherches sur les logiques non-chrysippiennes. Ann. Sci. Univ. Jassy 26, 431–466 (1940)MathSciNetzbMATHGoogle Scholar
  76. 76.
    Moisil, G.C.: Notes sur les logiques non-chrysippiennes. Ann. Sci. Univ. Jassy 27, 86–98 (1941)MathSciNetzbMATHGoogle Scholar
  77. 77.
    Monteiro, A.: Les ensembles fermes et les fondaments de la topologie. Port. Math. 2, 56–66 (1941)zbMATHGoogle Scholar
  78. 78.
    Monteiro, A.: Matrices de morgan caractéristiques pour le calcul propositionel classique. An. Acad. Bras. Cienc. 32, 1–7 (1960)zbMATHGoogle Scholar
  79. 79.
    Monteiro, L.: Axiomes independants pour les algebres de Łukasiewicz trivalentes. Bull. Soc. Sci. Math. Phys. 55, 199–202 (1963). Appeared also as Notas de Logica Matematica, n. 22, Instituto de Matematica, Universitad Nacional del Sur, Bahia Blanca – Argentina (1964)Google Scholar
  80. 80.
    Monteiro, A.: Sur la definition des algebres de Łukasiewicz trivalentes. Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine 7(55), 3–12 (1963). Appeared also as Notas de Logica Matematica, n. 21, Instituto de Matematica, Universitad Nacional del Sur, Bahia Blanca – Argentina (1964)Google Scholar
  81. 81.
    Monteiro, A.: Construction des algèbres de Łukasiewicz trivalentes dens les algèbres de Boole monadiques – I. Math. Japon. 12, 1–23 (1967)MathSciNetzbMATHGoogle Scholar
  82. 82.
    Monteiro, A., Ribeiro, H.: L’operation de fermeture et ses invariants dans les systemes partiellement ordennes. Port. Math. 3, 171–184 (1942)MathSciNetzbMATHGoogle Scholar
  83. 83.
    Moore, E.H.: Introduction to a Form of General Analysis. AMS Colloq. Publ., vol. 2. American Mathematical Society, New Haven (1910)Google Scholar
  84. 84.
    Nakamura, M.: Closure in general lattices. Proc. Imperial Acad. XVII, 5–6 (1941)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Ore, O.: Combinations of closure relations. Ann. Math. 44, 514–533 (1942)MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Ore, O.: Galois connexions. Trans. Am. Math. Soc. 55, 493–513 (1944)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Pagliani, P.: Rough Sets and Nelson Algebras. Fund. Inform. 27(2,3), 205–219 (1996)Google Scholar
  88. 88.
    Pagliani, P.: Rough set theory and logic–algebraic structures. In: Incomplete Information: Rough Set Analysis, Physica–Verlag, pp. 109–190. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  89. 89.
    Pawlak, Z.: Information systems - theoretical foundations. Inf. Syst. 6, 205–218 (1981)zbMATHCrossRefGoogle Scholar
  90. 90.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)zbMATHCrossRefGoogle Scholar
  91. 91.
    Pawlak, Z.: On rough sets. Bull. EATCS 24, 94–109 (1984)Google Scholar
  92. 92.
    Pawlak, Z.: Rough Sets and Decision Tables, pp. 177–186. Springer, Berlin (1985)Google Scholar
  93. 93.
    Pawlak, Z.: Rough logic. Bull. Pol. Acad. Sci. Tech. Sci. 35, 253–258 (1987)MathSciNetzbMATHGoogle Scholar
  94. 94.
    Pawlak, Z.: Rough sets: A new approach to vagueness. In: Zadeh, L.A., Kacprzyc, J. (eds.) Fuzzy Logic for the Management of Uncertainty, pp. 105–118. Wiley, New York (1992)Google Scholar
  95. 95.
    Poincaré, H.: Le continu mathématique. Rev. Métaphys. Morale I, 26–34 (1893). Reprinted in [96] as Chapter IIGoogle Scholar
  96. 96.
    Poincaré, H.: La Science et l’hypothèse. Flammarion, Paris (1903). English translation as Science and Hypothesis. Dover, New York, 1952Google Scholar
  97. 97.
    Polkowski, L., Skowron, A., Zytkow, J.: Tolerance based rough sets. In: Rough Sets and Soft Computing, Third International Workshop (RSSC94), pp. 55–58 (1994)Google Scholar
  98. 98.
    Qi, J.J., Wei, L., Li, Z.: A partitional view of concept lattice. In: Proc. of The 10th International Conference on Rough Sets, Fuzzy Sets, DataMining, and Granular Computing, Part I, pp. 74–83 (2005)Google Scholar
  99. 99.
    Rasiowa, H.: An Algebraic Approach to Non-classical Logics. North Holland, Amsterdam (1974)zbMATHGoogle Scholar
  100. 100.
    Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics. Monografie Matematyczne, vol. 41, 3rd edn. Polish Scientific Publishers, Warszawa (1970)Google Scholar
  101. 101.
    Rescher, N.: Many-Valued Logic. McGraw-Hill, New York (1969)zbMATHGoogle Scholar
  102. 102.
    Simmons, G.F.: Topology and Modern Analysis. McGraw-Hill, New York (1963)zbMATHGoogle Scholar
  103. 103.
    Skowron, A.: On topology in information systems. Bull. Pol. Acad. Sci. Math. 36, 477–479 (1988)MathSciNetzbMATHGoogle Scholar
  104. 104.
    Slowinski, R., Stefanowski, J.: Rough classification in incomplete information systems. Math. Comput. Modell. 12, 1347–1357 (1989)CrossRefGoogle Scholar
  105. 105.
    Smyth, M.B.: Topology. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science, pp. 641–761. Oxford University Press, Oxford (1992)Google Scholar
  106. 106.
    Tang, T.C.: Algebraic postulates and a geometrical interpretation for the Lewis calculus of strict implication. Bull. Am. Math. Soc. 44, 737–744 (1938)zbMATHCrossRefGoogle Scholar
  107. 107.
    Tarski, A.: Fundamentale Begriffe der Methodologie der deduktiven Wissennschaften. I. Monatsh. Math. Phys. 37, 361–404 (1930). English version in [108]Google Scholar
  108. 108.
    Tarski, A.: Logic, Semantics, Metamathematics. Hackett, Indianapolis (1983). Second edition–First edition (1956) by OxfordGoogle Scholar
  109. 109.
    Tarski, A., Thompson, F.B.: Some general properties of cylindric algebras. Bull. Am. Math. Soc. 58, 65 (1952). Abstracts of the Meeting in Pasadena, December 1, 1951Google Scholar
  110. 110.
    Terasaka, H.: Theorie der topologischen verbände. Proc. Imperial Acad. Tokio 13, 401–405 (1937)zbMATHCrossRefGoogle Scholar
  111. 111.
    Varadarajan, V.S.: Probability in physics and a theorem on simultaneous measurability. Commun. Pure Appl. Math. 25, 189–217 (1962)zbMATHCrossRefGoogle Scholar
  112. 112.
    Varadarajan, V.S.: Geometry of Quantum Physics. I. Van Nostrand, Princeton (1968)Google Scholar
  113. 113.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Investigations in Physics. Princeton University Press, Princeton (1955). Translated from the German edition of 1932 by R. T. BeyerGoogle Scholar
  114. 114.
    Ward, M.: The closure operator on lattice. Ann. Math. 43, 191–196 (1942)MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)CrossRefGoogle Scholar
  116. 116.
    Wybraniec-Skardowska, U.: On a generalization of approximation space. Bull. Pol. Acad. Sci. Math. 37, 51–61 (1989)MathSciNetzbMATHGoogle Scholar
  117. 117.
    Yao, Y.Y.: A comparative study of formal concepts analysis and rough set theory in data analysis. In: Tsumoto, S., et al. (eds.) Proceedings of 3rd International Conference on Rough Sets and Current Trends in Computing, RSCTC’04. LNCS, vol. 3066, pp. 59–68. Springer, Berlin (2004)CrossRefGoogle Scholar
  118. 118.
    Yao, Y.Y.: Concept lattices in rough set theory. In: Proceedings of 23rd International Meeting of the North American Fuzzy Information Processing Society, NAFIPS’04, pp. 796–801 (2004)Google Scholar
  119. 119.
    Yao, Y.Y., Chen, Y.H.: Rough set approximations in formal concept analysis. In: Proceedings of 23rd International Meeting of the North American Fuzzy Information Processing Society, NAFIPS’04, pp. 73–78 (2004)Google Scholar
  120. 120.
    Yao, Y.Y., Chen, Y.: Rough set approximations in formal concept analysis. In: Peters, J., Skowron, A. (eds.) Transactions on Rough Sets, V. LNCS, vol. 4100, pp. 285–305. Springer, Berlin (2006)CrossRefGoogle Scholar
  121. 121.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)zbMATHCrossRefGoogle Scholar
  122. 122.
    Zakowski, W.: Approximations in the space (U, π). Demonstration Math. XVI, 761–769 (1983)Google Scholar
  123. 123.
    Zeeman, E.: The topology of the brain and visual perception. In: Topology of 3-Manifolds and Related Topics, pp. 240–256. Prentice-Hall, Englewood Cliffs (1962)Google Scholar
  124. 124.
    Zierler, N.: Axioms for non–relativistic quantum mechanics. Pac. J. Math. 2, 1151–1169 (1961)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Gianpiero Cattaneo
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità di Milano–BicoccaMilanoItaly

Personalised recommendations