Advertisement

S-Approximation Spaces

  • Ali ShakibaEmail author
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

In this paper, the concept of S-approximation spaces is surveyed at first and then, the combination of different S-approximation spaces with different decider mappings S is considered, i.e. combining S-approximation spaces Gi = (Ui, Wi, Ti, Si) for i = 1, …, k. Moreover, the problem of preserving the corresponding properties of the lower and upper approximation operators as well as the three regions of the 3WD in the combination of different S-approximation spaces is considered in the paper.

References

  1. 1.
    Davvaz, B.: A short note on algebraic T-rough sets. Inf. Sci. 178(16), 3247–3252 (2008). Including Special Issue: Recent advances in granular computing Fifth International Conference on Machine Learning and CyberneticsGoogle Scholar
  2. 2.
    Dempster, A.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hooshmandasl, M.R., Shakiba, A., Goharshady, A.K., Karimi, A.: S-approximation: a new approach to algebraic approximation. J. Discrete Math. 2014, 1–5 (2014)CrossRefGoogle Scholar
  4. 4.
    Huang, B., Guo, C.X., Zhuang, Y.L., Li, H.X., Zhou, X.Z.: Intuitionistic fuzzy multigranulation rough sets. Inf. Sci. 277, 299–320 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Levandowsky, M., Winter, D.: Distance between sets. Nature 234(5323), 34–35 (1971)CrossRefGoogle Scholar
  6. 6.
    Lin, T.Y., Yao, Y.Y.: Neighborhoods systems: measure, probability and belief functions. In: Proceedings of the 4th International Workshop on Rough Sets, Fuzzy Sets and Machine Discovery, pp. 202–207 (1996)Google Scholar
  7. 7.
    Lin, G., Qian, Y., Li, J.: NMGRS: neighborhood-based multigranulation rough sets. Int. J. Approx. Reason. 53(7), 1080–1093 (2012). Selected Papers-Uncertain Reasoning at FLAIRS 2010MathSciNetCrossRefGoogle Scholar
  8. 8.
    Pagliani, P.: Pretopologies and dynamic spaces. Fund. Inform. 59(2–3), 221–239 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)CrossRefGoogle Scholar
  10. 10.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Theory and Decision Library: System Theory, Knowledge Engineering, and Problem Solving. Kluwer Academic, Dordrecht (1991)CrossRefGoogle Scholar
  11. 11.
    Pei, Z., Xu, Z.: Rough set models on two universes. Int. J. Gen. Syst. 33(5), 569–581 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Polkowski, L., Skowron, A.: Rough mereology. In: Ras, Z.W., Zemankova, M. (eds.) Methodologies for Intelligent Systems, pp. 85–94. Springer, Berlin (1994). 00115Google Scholar
  13. 13.
    Qian, Y., Liang, J., Dang, C.: Incomplete multigranulation rough set. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 40(2), 420–431 (2010)CrossRefGoogle Scholar
  14. 14.
    Qian, Y., Li, S., Liang, J., Shi, Z., Wang, F.: Pessimistic rough set based decisions: a multigranulation fusion strategy. Inf. Sci. 264(0), 196–210 (2014). Serious GamesMathSciNetCrossRefGoogle Scholar
  15. 15.
    Qian, Y., Zhang, H., Sang, Y., Liang, J.: Multigranulation decision-theoretic rough sets. Int. J. Approx. Reason. 55(1, Pt 2), 225–237 (2014). Special issue on Decision-Theoretic Rough SetsMathSciNetCrossRefGoogle Scholar
  16. 16.
    Shafer, G.: A Mathematical Theory of Evidence, vol. 1. Princeton University Press, Princeton (1976). 12781Google Scholar
  17. 17.
    Shakiba, A., Hooshmandasl, M.R.: S-approximation spaces: a three-way decision approach. Fund. Inform. 139(3), 307–328 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Shakiba, A., Hooshmandasl, M.R.: Neighborhood system S-approximation spaces and applications. Knowl. Inf. Syst. 49(2), 749–794 (2016)CrossRefGoogle Scholar
  19. 19.
    Shakiba, A., Hooshmandasl, M.R., Davvaz, B., Shahzadeh Fazeli, S.A.: An intuitionistic fuzzy approach to S-approximation spaces. J. Intell. Fuzzy Syst. 30(6), 3385–3397 (2016)CrossRefGoogle Scholar
  20. 20.
    Shakiba, A., Hooshmandasl, M.R., Davvaz, B., Shahzadeh Fazeli, S.A.: S-approximation spaces: a fuzzy approach. Univ. Sistan Baluchestan 14(2), 127–154 (2017)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Shakiba, A., Goharshady, A.K., Hooshmandasl, M.R., Alambardar Meybodi, M.: A note on belief structures and S-approximation spaces (2018). arXiv:1805.10672Google Scholar
  22. 22.
    Sun, B., Ma, W.: Multigranulation rough set theory over two universes. J. Intell. Fuzzy Syst. 28(3), 1251–1269 (2014)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Xu, W., Wang, Q., Zhang, X.: Multi-granulation fuzzy rough sets in a fuzzy tolerance approximation space. Int. J. Fuzzy Syst. 13(4), 246–259 (2011)MathSciNetGoogle Scholar
  24. 24.
    Xu, W., Wang, Q., Luo, S.: Optimistic multi-granulation fuzzy rough sets on tolerance relations. In: 2012 International Symposium on Information Science and Engineering (ISISE), pp. 299–302. IEEE, Shanghai (2012)Google Scholar
  25. 25.
    Yao, Y.Y.: Generalized rough set models. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methodology and Approximations. Studies in Fuzziness and Soft Computing, vol. 1, pp. 286–318. Physica, Heidelberg (1998)Google Scholar
  26. 26.
    Yao, Y.Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Inf. Sci. 111(1–4), 239–259 (1998)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yao, Y.Y.: An outline of a theory of three-way decisions. In: Yao, J., Yang, Y., Slowinski, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) Rough Sets and Current Trends in Computing, pp. 1–17. Springer, Berlin (2012). 00031Google Scholar
  28. 28.
    Yao, Y.Y., Deng, X.: Quantitative rough sets based on subsethood measures. Inf. Sci. 267, 306–322 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar
  30. 30.
    Zadeh, L.A.: The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy Sets Syst. 11(1), 197–198 (1983)MathSciNetGoogle Scholar
  31. 31.
    Zadeh, L.A.: A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination. AI Mag. 7(2), 85 (1986)Google Scholar
  32. 32.
    Zhang, J., Li, T., Chen, H.: Composite rough sets. In: Lei, J., Wang, F., Deng, H., Miao, D. (eds.) Artificial Intelligence and Computational Intelligence. Lecture Notes in Computer Science, vol. 7530, pp. 150–159. Springer, Berlin (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceVali-e-Asr University of RafsanjanRafsanjanIran

Personalised recommendations