Access-Control Prediction in Social Network Sites: Examining the Role of Homophily

  • Nicolás E. Díaz FerreyraEmail author
  • Tobias Hecking
  • H. Ulrich Hoppe
  • Maritta Heisel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11186)


Often, users of Social Network Sites (SNSs) like Facebook or Twitter have issues when controlling the access to their content. Access-control predictive models are used to recommend access-control configurations which are aligned with the users’ individual privacy preferences. One basic strategy for the prediction of access-control configurations is to generate access-control lists out of the emerging communities inside the user’s ego-network. That is, in a community-based fashion. Homophily, which is the tendency of individuals to bond with others who hold similar characteristics, can influence the network structure of SNSs and bias the users’ privacy preferences. Consequently, it can also impact the quality of the configurations generated by access-control predictive models that follow a community-based approach. In this work, we use a simulation model to evaluate the effect of homophily when predicting access-control lists in SNSs. We generate networks with different levels of homophily and analyse thereby its impact on access-control recommendations.


Homophily Preferential attachment Adaptive privacy Access-control prediction Social Network Sites 



This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant No. GRK 2167, Research Training Group “User-Centred Social Media”.

Supplementary material


  1. 1.
    Barabási, A.L.: Network Science. Cambridge University Press, Cambridge (2016)Google Scholar
  2. 2.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999).,
  3. 3.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exper. 2008(10), P10008 (2008)CrossRefGoogle Scholar
  4. 4.
    Boyd, D., Levy, K., Marwick, A.: The networked nature of algorithmic discrimination. In: Data and Discrimination: Collected Essays. Open Technology Institute, New America Washington, DC (2014)Google Scholar
  5. 5.
    Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal Complex Syst. 1695(5), 1–9 (2006).
  6. 6.
    Díaz Ferreyra, N.E., Meis, R., Heisel, M.: At your own risk: shaping privacy heuristics for online self-disclosure. In: Proceedings of the 16th Annual Conference on Privacy, Security and Trust, August 2018Google Scholar
  7. 7.
    Fang, L., LeFevre, K.: Privacy wizards for social networking sites. In: Proceedings of the 19th International Conference on World Wide Web, pp. 351–360, WWW 2010. ACM, New York (2010).
  8. 8.
    Gil, M., Pelechano, V., Fons, J., Albert, M.: Designing the human in the loop of self-adaptive systems. In: García, C.R., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds.) UCAmI 2016. LNCS, vol. 10069, pp. 437–449. Springer, Cham (2016). Scholar
  9. 9.
    Kim, K., Altmann, J., Hwang, J.: The impact of the subgroup structure on the evolution of networks: an economic model of network evolution. In: 2010 INFOCOM IEEE Conference on Computer Communications Workshops, pp. 1–9, March 2010.
  10. 10.
    Kim, K., Altmann, J.: Effect of homophily on network formation. Commun. Nonlinear Sci. Numer. Simul. 44, 482–494 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Leskovec, J., McAuley, J.: Learning to discover social circles in ego networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 539–547. Curran Associates, Inc. (2012)Google Scholar
  12. 12.
    Madden, M., et al.: Teens, social media, and privacy. Pew Res. Cent. 21, 2–86 (2013)Google Scholar
  13. 13.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27(1), 415–444 (2001)CrossRefGoogle Scholar
  14. 14.
    Misra, G., Such, J.M.: REACT: recommending access control decisions to social media users. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pp. 421–426, ASONAM 2017. ACM, New York (2017).
  15. 15.
    Misra, G., Such, J.M., Balogun, H.: Non-sharing communities? An empirical study of community detection for access control decisions. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 49–56 (2016)Google Scholar
  16. 16.
    Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003). Scholar
  17. 17.
    Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006). Scholar
  18. 18.
    Thedchanamoorthy, G., Piraveenan, M., Kasthuriratna, D., Senanayake, U.: Node assortativity in complex networks: an alternative approach. Procedia Comput. Sci. 29, 2449–2461 (2014)CrossRefGoogle Scholar
  19. 19.
    Volkovich, Y., Scellato, S., Laniado, D., Mascolo, C., Kaltenbrunner, A.: The length of bridge ties: structural and geographic properties of online social interactions. In: Proceedings of the 6th International AAAI Conference on Weblogs and Social Media (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Nicolás E. Díaz Ferreyra
    • 1
    Email author
  • Tobias Hecking
    • 1
  • H. Ulrich Hoppe
    • 1
  • Maritta Heisel
    • 1
  1. 1.RTG User-Centred Social MediaUniversity of Duisburg EssenDuisburgGermany

Personalised recommendations