Advertisement

Ground States for Potts Model with a Countable Set of Spin Values on a Cayley Tree

  • G. I. Botirov
  • M. M. Rahmatullaev
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 264)

Abstract

We consider Potts model, with competing interactions and countable spin values \(\varPhi =\{0,1,\dots \}\) on a Cayley tree of order three. We study periodic ground states for this model.

Keywords

Potts model Configuration Ground state Weakly periodic ground state Countable set of spin values 

Notes

Acknowledgements

The authors thank Professor U. Rozikov for useful discussions. Also the authors thank for anonyme reviewers for useful comments.

References

  1. 1.
    Mukhamedov, F., Rozikov, U., Mendes, F.F.: On contour arguments for the three state Potts model with competing interactions on a semi-infinite Cayley tree. J. Math. Phys. 48, 013301 (2007).  https://doi.org/10.1063/1.2408398MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Rozikov, U.A.: Gibbs measures on Cayley trees. World Scientific (2013). ISBN-13: 978-9814513371, ISBN-10: 9814513377Google Scholar
  3. 3.
    Rozikov, U.A.: A constructive description of ground states and gibbs measures for Ising model with two-step interactions on Cayley tree. J. Stat. Phys. 122, 217–235 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Rahmatullaev, M.M.: Desription of weak periodic ground states of Ising model with competing interactions on Cayley tree. Appl. Math. Inf. Sci. 4(2), 237–241 (2010)Google Scholar
  5. 5.
    Botirov, G.I., Rozikov, U.A.: Potts model with competing interactions on the Cayley tree: the contour method. Theor. Math. Phys. 153, 1423–1433 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Rozikov, U.A., Ishankulov, F.T.: Description of periodic \(p\)-harmonic functions on Cayley tree NoDEA. Nonlinear Differ. Equ. Appl. 17(2), 153–160 (2010)Google Scholar
  7. 7.
    Rozikov, U.A., Rahmatullaev, M.M.: Weakly periodic ground states and Gibbs measures for the Ising model with competing interactions on the Cayley tree. Theor. Math. Phys. 160, 1292–1300 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Rahmatullaev, M.M., Rasulova, M.A.: Periodic and weakly periodic ground states for the Potts model with competing interactions on the Cayley tree. Sib. Adv. Math. 26(3), 215–229 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Rahmatullaev, M.M.: Weakly periodic Gibbs measures and ground states for the Potts model with competing interactions on the Cayley tree. Theor. Math. Phys. 176, 1236–1251 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ganikhodjaev, N.N., Mukhamedov, F.M., Mendes, J.F.F.: On the three state Potts model with competing interactions on the Bethe lattice. J. Stat. Mech. P08012, 29p (2006)Google Scholar
  11. 11.
    Ganikhodjaev, N., Mukhamedov, F., Pah, C.H.: Phase diagram of the three states Potts model with next nearest neighbour interactions on the Bethe lattice. Phys. Lett. A 373, 33–38 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)zbMATHGoogle Scholar
  13. 13.
    Gankhodjaev, N.N.: Group represantation and automorphisms of the Cayley tree. Dokl. Akad. Nauk Resp. Uzbekistan 4, 3–6 (1994)Google Scholar
  14. 14.
    Ganikhodzhaev, N.N., Rozikov, U.A.: Description of peridoic extreme Gibbs measures of some lattice models on the Cayley tree. Theor. Math. Phys. 111, 480–486 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of MathematicsTashkentUzbekistan

Personalised recommendations