Advertisement

Numerical Solution to Singularly Perturbed Differential Equation of Reaction-Diffusion Type in MAGDM Problems

  • P. John Robinson
  • M. Indhumathi
  • M. Manjumari
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

In multiple attribute group decision-making (MAGDM) problems, weights of decision-makers play a vital role. In this paper, we present a new approach for finding the weights for decision-making process based on singular perturbation problem in which decision-makers’ weights are completely unknown. The attribute weights are derived using the exact and numerical solution for reaction-diffusion type problem. For the decision-making process, we utilize a class of ordered weighted averaging (OWA) operator, and the newly calculated decision-maker weights are used in the computations of identifying the best alternative from the available alternatives. The feasibility of the proposed method is displayed through a numerical illustration, and comparison is made with existing ranking methods.

Keywords

MAGDM Intuitionistic fuzzy sets Singular perturbation problem Numerical methods Ordered weighted averaging (OWA) operator 

References

  1. 1.
    Atanassov, K. : Intuitionistic fuzzy sets. Fuzzy Sets and Systems. (1986) https://doi.org/10.1016/0165-0114(89)90205-4 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Atanassov, K. : More on intuitionistic fuzzy sets. Fuzzy Sets and Systems. (1989) https://doi.org/10.1016/0165-0114(89)90215-7 MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chen, S. M. : Similarity measures between vague sets and between elements. IEEE Trans. Syst. Man Cybern. 27(1), 153–158 (1997)CrossRefGoogle Scholar
  4. 4.
    Chen, S.M., Randyanto, Y. : A Novel Similarity Measure Between Intuitionistic Fuzzy Sets and its Applications. International Journal of Pattern Recognition and Artificial Intelligence. World Scientific Publishing Company. 27(7), 1350021–1350034 (34 pages) (2013)CrossRefGoogle Scholar
  5. 5.
    Hong, D. H., Kim, C. : A note on similarity measures between vague sets and between elements. Inform. Sci. 115(1), 83–96 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Hung, W. L., Yang, M.S. : Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance. Pattern Recogn. Lett. 25(14), 1603–1611 (2004)CrossRefGoogle Scholar
  7. 7.
    Li, D-F., Chuntian, C. : New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern Recogn. Lett. 23(13), 221–225 (2002)Google Scholar
  8. 8.
    Li, D-F., Ye Y-F. : Interval-valued least square prenucleolus of interval-valued cooperative games and a simplified method. Operational Research. 18(1), 205–220 (2018)CrossRefGoogle Scholar
  9. 9.
    Li, D-F., Wan, S-P. : Minimum Weighted Minkowski Distance Power Models for Intuitionistic Fuzzy Madm with Incomplete Weight Information. International Journal of Information Technology and Decision Making. 16(5), 1387–1408 (2017)CrossRefGoogle Scholar
  10. 10.
    Liu, J-C., Li, D-F. : Correlations to TOPSIS-Based Nonlinear-Programming Methodology for Multiattribute Decision making With Interval-Valued Intuitionistic Fuzzy Sets. IEEE Trans. Fuzzy Systems. 26(1), 391 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Li, F., Xu, Z. Y. : Measures of similarity between vague sets. J. Software. 12(6), 922–927 (2001)Google Scholar
  12. 12.
    Li, L., Olson, D.L., Qin, Z. : Similarity measures between intuitionistic fuzzy (vague) sets: A comparative analysis. Pattern Recogn. Lett. 28(2), 278–285 (2007)CrossRefGoogle Scholar
  13. 13.
    Malley, R. E. O. : Introduction to singular perturbations. Academic press New York (1974)Google Scholar
  14. 14.
    Matthews, S., O’Riordan, E., Shishkin, G.I. : A Numerical Method for a System of Singularly Perturbed Reaction-Diffusion Equations. Journal of Computational and Applied Mathematics. 145(1), 151–166 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Miller, J.J.H., O’Riordan, E., Shishkin, G.I. : Fitted numerical methods for singular perturbation problems. World scientific Publishing Co. Pvt. Ltd. (1996)zbMATHCrossRefGoogle Scholar
  16. 16.
    Mitchell, H. B. : On the Li, D-F., Chuntian similarity measure and its application to pattern recognition. Pattern Recogn. Lett. 24(16), 3101–3104 (2003)Google Scholar
  17. 17.
    Nayfeh, A.H. : Perturbation methods. John Wiley and sons Newyork (1973)Google Scholar
  18. 18.
    Paramasivam, M., Valarmathi, S., Miller, J.J.H.: Second Order Parameter-Uniform Convergence for a Finite Difference Method for a Singularly Perturbed Linear Reaction-Diffusion System. Math. Commun. 15(2), 587–612 (2010)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Robinson, J.P., Amirtharaj, E.C.H. : Contrasting Correlation Coefficient with Distance Measure in Interval Valued Intuitionistic Trapezoidal Fuzzy Numbers. International Journal of Fuzzy System Applications. 5(3), 42–76 (2016)CrossRefGoogle Scholar
  20. 20.
    Robinson, J.P., Jeeva, S. : Mining Trapezoidal Intuitionistic Fuzzy Correlation Rules for Eigen Valued MAGDM Problems. International Journal of Control Theory and Applications. 9(7), 585–616 (2016)Google Scholar
  21. 21.
    Robinson, J.P., Jeeva, S. : Application of Jacobian & Sor Iteration process in Intuitionistic Fuzzy MAGDM Problems. Mathematical Sciences International Research Journal. 6(2), 130–134 (2017)Google Scholar
  22. 22.
    Ross, H.G., Stynes, M., Tobiska, L. : Numerical Methods for Singularly Perturbed Differential Equations. Springer-Verlag Newyork (1996)Google Scholar
  23. 23.
    Yager, R. R., Filev, D. P. : Induced ordered weighted averaging operators. IEEE Transactions on Systems, Man and Cybernetics. 29(1), 141–150 (1999)CrossRefGoogle Scholar
  24. 24.
    Ye, J. : Cosine similarity measures for intuitionistic fuzzy sets and their applications. Math. Comput. Model. 53(1-2), 91–97 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Yu, G-F., Li, D-F. : Application of satisfactory degree to interval-valued intuitionistic fuzzy multi-attribute decision making. Journal of Intelligent and Fuzzy Systems. 32(1), 1019–1028 (2017)zbMATHCrossRefGoogle Scholar
  26. 26.
    Yu, G-F., Li., D-F., Qiu, J-M., Zheng X-X. : Some operators of intuitionistic uncertain 2-tuple linguistic variables and application to multi-attribute group decision making with heterogeneous relationship among attributes. Journal of Intelligent and Fuzzy Systems. 34(1), 599–611 (2018)CrossRefGoogle Scholar
  27. 27.
    Zadeh, L. A. : Fuzzy Sets. Information and Control. 8(3), 338–356 (1965)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • P. John Robinson
    • 1
  • M. Indhumathi
    • 1
  • M. Manjumari
    • 1
  1. 1.Department of MathematicsBishop Heber CollegeTrichyIndia

Personalised recommendations