Cozero Divisor Graph of a Commutative Rough Semiring

  • B. Praba
  • A. ManimaranEmail author
  • V. M. Chandrasekaran
  • B. Davvaz
Conference paper
Part of the Trends in Mathematics book series (TM)


In this paper, we define the ideal generated by an element in the commutative rough semiring (T, Δ, ∇). The characterization of this ideal along with its properties are also studied. The cozero divisor graph of a commutative rough semiring is defined using this ideal. These concepts are illustrated through examples.


Semiring Ideal Principal ideal Cozero divisor 


  1. 1.
    Afkhami, M., Khashyarmanesh, K.: On the Cozero-Divisor Graphs of Commutative Rings and Their Complements. Bull. Malays. Math. Sci. Soc. (2) 35 (4), 935–944 (2012).Google Scholar
  2. 2.
    Bonikowaski, Z.: Algebraic structures of rough sets, Rough sets, fuzzy sets and knowledge discovery. Springer, London, 242–247 (1994).Google Scholar
  3. 3.
    Hong, H., Kim, Y., Scholten, G., Sendra, J. R.: Resultants Over Commutative Idempotent Semirings I : Algebraic Aspect. Journal of Symbolic Computation. 79 (2), 285–308 (2017).MathSciNetCrossRefGoogle Scholar
  4. 4.
    Howie, J.M.: Fundamentals of Semigroup Theory. Oxford University Press. New York, (2003).zbMATHGoogle Scholar
  5. 5.
    Iwinski, T. B.: Algebraic approach to Rough Sets. Bulletin of the Polish Academy of Sciences Mathematics. 35, 673–683 (1987).MathSciNetzbMATHGoogle Scholar
  6. 6.
    Kondo, M.: On The Structure of Generalized Rough sets. Information Sciences. 176, 586–600 (2006).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kuroki, N.: Rough Ideals in semigroups. Information Sciences. 100, 139–163 (1997).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Manimaran, A., Praba, B., Chandrasekaran, V. M.: Regular Rough ∇ Monoid of idempotents. International Journal of Applied Engineering and Research. 9(16), 3469–3479 (2014).Google Scholar
  9. 9.
    Manimaran, A., Praba, B., Chandrasekaran, V. M.: Characterization of rough semiring. Afrika Matematika. 28, 945–956 (2017).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pawlak,Z.: Rough Sets. International Journal of Computer & Information Sciences. 11, 341–356 (1982).MathSciNetCrossRefGoogle Scholar
  11. 11.
    Praba, B., Mohan, R.: Rough Lattice. International Journal of Fuzzy Mathematics and System. 3(2), 135–151 (2013).Google Scholar
  12. 12.
    Praba, B., Chandrasekaran, V. M., Manimaran, A.: Commutative Regular Monoid on Rough Sets. Italian Journal of Pure and Applied Mathematics. 31, 307–318 (2013).MathSciNetzbMATHGoogle Scholar
  13. 13.
    Praba, B., Chandrasekaran, V. M., Manimaran, A.: Semiring on Rough sets. Indian Journal of Science and Technology. 8(3), 280–286 (2015).CrossRefGoogle Scholar
  14. 14.
    Praba, B., Manimaran, A., Chandrasekaran, V. M.: The Zero Divisor Graph of a Rough Semiring. International Journal of Pure and Applied Mathematics. 98(5), 33–37 (2015).CrossRefGoogle Scholar
  15. 15.
    Ronnason Chinram.: Rough Prime Ideals and Rough Fuzzy Prime Ideals in Gamma Semigroups. Korean Mathematical Society. 24 (3), 341–351 (2009).Google Scholar
  16. 16.
    Yonghong Liu.: Special Lattice of Rough Algebras. Applied Mathematics. 2, 1522–1524 (2011).Google Scholar
  17. 17.
    Zadeh, L. A.: Fuzzy Sets. Information and Control. 8, 338–353 (1965).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • B. Praba
    • 1
  • A. Manimaran
    • 2
    Email author
  • V. M. Chandrasekaran
    • 2
  • B. Davvaz
    • 3
  1. 1.SSN College of EngineeringChennaiIndia
  2. 2.School of Advanced SciencesVITVelloreIndia
  3. 3.Department of MathematicsYazd UniversityYazdIran

Personalised recommendations