Advertisement

Cozero Divisor Graph of a Commutative Rough Semiring

  • B. Praba
  • A. ManimaranEmail author
  • V. M. Chandrasekaran
  • B. Davvaz
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

In this paper, we define the ideal generated by an element in the commutative rough semiring (T, Δ, ∇). The characterization of this ideal along with its properties are also studied. The cozero divisor graph of a commutative rough semiring is defined using this ideal. These concepts are illustrated through examples.

Keywords

Semiring Ideal Principal ideal Cozero divisor 

References

  1. 1.
    Afkhami, M., Khashyarmanesh, K.: On the Cozero-Divisor Graphs of Commutative Rings and Their Complements. Bull. Malays. Math. Sci. Soc. (2) 35 (4), 935–944 (2012).Google Scholar
  2. 2.
    Bonikowaski, Z.: Algebraic structures of rough sets, Rough sets, fuzzy sets and knowledge discovery. Springer, London, 242–247 (1994).Google Scholar
  3. 3.
    Hong, H., Kim, Y., Scholten, G., Sendra, J. R.: Resultants Over Commutative Idempotent Semirings I : Algebraic Aspect. Journal of Symbolic Computation. 79 (2), 285–308 (2017).MathSciNetCrossRefGoogle Scholar
  4. 4.
    Howie, J.M.: Fundamentals of Semigroup Theory. Oxford University Press. New York, (2003).zbMATHGoogle Scholar
  5. 5.
    Iwinski, T. B.: Algebraic approach to Rough Sets. Bulletin of the Polish Academy of Sciences Mathematics. 35, 673–683 (1987).MathSciNetzbMATHGoogle Scholar
  6. 6.
    Kondo, M.: On The Structure of Generalized Rough sets. Information Sciences. 176, 586–600 (2006).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kuroki, N.: Rough Ideals in semigroups. Information Sciences. 100, 139–163 (1997).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Manimaran, A., Praba, B., Chandrasekaran, V. M.: Regular Rough ∇ Monoid of idempotents. International Journal of Applied Engineering and Research. 9(16), 3469–3479 (2014).Google Scholar
  9. 9.
    Manimaran, A., Praba, B., Chandrasekaran, V. M.: Characterization of rough semiring. Afrika Matematika. 28, 945–956 (2017).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pawlak,Z.: Rough Sets. International Journal of Computer & Information Sciences. 11, 341–356 (1982).MathSciNetCrossRefGoogle Scholar
  11. 11.
    Praba, B., Mohan, R.: Rough Lattice. International Journal of Fuzzy Mathematics and System. 3(2), 135–151 (2013).Google Scholar
  12. 12.
    Praba, B., Chandrasekaran, V. M., Manimaran, A.: Commutative Regular Monoid on Rough Sets. Italian Journal of Pure and Applied Mathematics. 31, 307–318 (2013).MathSciNetzbMATHGoogle Scholar
  13. 13.
    Praba, B., Chandrasekaran, V. M., Manimaran, A.: Semiring on Rough sets. Indian Journal of Science and Technology. 8(3), 280–286 (2015).CrossRefGoogle Scholar
  14. 14.
    Praba, B., Manimaran, A., Chandrasekaran, V. M.: The Zero Divisor Graph of a Rough Semiring. International Journal of Pure and Applied Mathematics. 98(5), 33–37 (2015).CrossRefGoogle Scholar
  15. 15.
    Ronnason Chinram.: Rough Prime Ideals and Rough Fuzzy Prime Ideals in Gamma Semigroups. Korean Mathematical Society. 24 (3), 341–351 (2009).Google Scholar
  16. 16.
    Yonghong Liu.: Special Lattice of Rough Algebras. Applied Mathematics. 2, 1522–1524 (2011).Google Scholar
  17. 17.
    Zadeh, L. A.: Fuzzy Sets. Information and Control. 8, 338–353 (1965).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • B. Praba
    • 1
  • A. Manimaran
    • 2
    Email author
  • V. M. Chandrasekaran
    • 2
  • B. Davvaz
    • 3
  1. 1.SSN College of EngineeringChennaiIndia
  2. 2.School of Advanced SciencesVITVelloreIndia
  3. 3.Department of MathematicsYazd UniversityYazdIran

Personalised recommendations