Advertisement

On Dendrites Generated by Symmetric Polygonal Systems: The Case of Regular Polygons

  • Mary SamuelEmail author
  • Dmitry Mekhontsev
  • Andrey Tetenov
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

We define G-symmetric polygonal systems of similarities and study the properties of symmetric dendrites, which appear as their attractors. This allows us to find the conditions under which the attractor of a zipper becomes a dendrite.

Notes

Acknowledgements

Supported by Russian Foundation of Basic Research projects 16-01-00414 and 18-501-51021

References

  1. 1.
    Aseev, V. V., Tetenov, A. V., Kravchenko, A. S.: On Self-Similar Jordan Curves on the Plane. Sib. Math. J. 44(3), 379–386 (2003).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bandt, C., Stahnke, J.: Self-similar sets 6. Interior distance on deterministic fractals. preprint, Greifswald 1990.Google Scholar
  3. 3.
    Charatonik, J., Charatonik, W.: Dendrites. Aport. Math. Comun. 22 227–253(1998).MathSciNetzbMATHGoogle Scholar
  4. 4.
    Croydon, D.: Random fractal dendrites, Ph.D. thesis. St. Cross College, University of Oxford, Trinity(2006)Google Scholar
  5. 5.
    Hata, M.: On the structure of self-similar sets. Japan. J. Appl. Math. 3, 381–414.(1985)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kigami, J.: Harmonic calculus on limits of networks and its application to dendrites. J. Funct. Anal. 128(1) 48–86, (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kuratowski, K.: Topology. Vols. 1 and 2. Academic Press and PWN, New York(1966)zbMATHGoogle Scholar
  8. 8.
    Samuel, M., Tetenov, A. V. , Vaulin, D.A.: Self-Similar Dendrites Generated by Polygonal Systems in the Plane. Sib. Electron. Math. Rep. 14, 737–751(2017)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Tetenov, A. V.: Self-similar Jordan arcs and graph-oriented IFS. Sib. Math.J. 47(5), 1147–1153 (2006).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Tetenov, A. V., Samuel, M., Vaulin, D.A.: On dendrites generated by polyhedral systems and their ramification points. Proc. Krasovskii Inst. Math. Mech. UB RAS 23(4), 281–291 (2017) doi: 10.21538/0134-4889-2017-23-4-281-291 (in Russian)Google Scholar
  11. 11.
    Tetenov A. V., Samuel, M., Vaulin, D.A.: On dendrites, generated by polyhedral systems and their ramification points. arXiv:1707.02875v1 [math.MG], 7 Jul 2017.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mary Samuel
    • 1
    Email author
  • Dmitry Mekhontsev
    • 2
  • Andrey Tetenov
    • 2
    • 3
    • 4
  1. 1.Department of MathematicsBharata Mata CollegeKochiIndia
  2. 2.Sobolev Mathematics InstituteNovosibirskRussia
  3. 3.Gorno-Altaisk State UniversityAltay RepublitsRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations