Advertisement

An Approach to Segment the Hippocampus from T2-Weighted MRI of Human Head Scans for the Diagnosis of Alzheimer’s Disease Using Fuzzy C-Means Clustering

  • T. GenishEmail author
  • K. Prathapchandran
  • S. P. Gayathri
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

The human brain plays a key role in memory-related functions such as encoding, storage, and retrieval of information. A defect in the brain results in memory impairment such as Alzheimer’s disease (AD). Atrophy in the volume of hippocampus (Hc) is the earlier symptom of AD. Therefore, to study the Hc, one needs to segment it from the magnetic resonance imaging (MRI) slice. In this paper, a semiautomatic method is proposed to segment the Hc from MRI of human head scans. The proposed method uses geometric mean filter for image smoothing. The fuzzy C-means clustering is applied to convert the filtered image into three distinct regions. From those regions, the image is classified into region of interest (ROI) pixels and non-ROI pixels. The proposed method is applied to five volumes of human brain MRI. The Jaccard (J) and Dice (D) indices are used to quantify the performance of the proposed method. The results show that the proposed method works better than the existing method. The average value of Jaccard and Dice is obtained as 0.9530 and 0.9744, respectively, for the five volumes.

Keywords

Segmentation Hippocampus Alzheimer’s disease Post-mortem MRI Fuzzy clustering ITK-SNAP 

References

  1. 1.
    Shen, D., Moffat, S., Resnick, S. M., Davatzikos, C.: Measuring Size and Shape of the Hippocampus in MR Images Using a Deformable Shape Model. NeuroImage. 15, 422–434 (2002).CrossRefGoogle Scholar
  2. 2.
    Kim, H., Chupin, M., Colliot, O., Bernhardt, B. C., Bernasconi, N., Bernasconi, A.: Automatic hippocampal segmentation in temporal lobe epilepsy: Impact of developmental abnormalities. NeuroImage. 59, 3178–3186 (2012).CrossRefGoogle Scholar
  3. 3.
    Morey, R. A., Petty, C. M., Xu, Y., Hayes, J. P., Wagner, H. R., Lewis, D. V., LaBar, K. S., Styner, M., McCarthy, G.: A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. NeuroImage. 45, 855–866 (2009).CrossRefGoogle Scholar
  4. 4.
    Chupin, M., Hammers, A., Liu, R. S., Colliot, O., Burdett. J., Bardinet, E., Duncan, J. S, Garnero, L., Lemieux, L.: Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation. NeuroImage. 46, 749–761 (2009).CrossRefGoogle Scholar
  5. 5.
    Somasundaram, K., Genish, T.: An atlas based approach to segment the hippocampus from MRI of human head scans for the diagnosis of Alzheimers disease. International Journal of Computational Intelligence and Informatics. 5, 7–13 (2015).Google Scholar
  6. 6.
    Kim, M., Wu, G., Li, W., Wang, L., Don Son, Y., Cho, Z. H., Shen, D.: Automatic hippocampus segmentation of 7.0 Tesla MR images by combining multiple atlases and auto-context models. NeuroImage. 83, 335–345 (2013).CrossRefGoogle Scholar
  7. 7.
    Van der Lijn, F., Heijer, T. D., Breteler, M. M. B., Niessen, W. J.: Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts. NeuroImage. 43, 708–720 (2008).CrossRefGoogle Scholar
  8. 8.
    Gonzelez, R. C., Woods, R. E.: Digital Image Processing, Second edition. Pearson Education. 117–118 (1992).Google Scholar
  9. 9.
    Takeda, H., Farsiu, S., Milanfar, P.: Kernel Regression for Image Processing and Reconstruction. IEEE Transactions on Image Processing. 16, 349–366 (2007).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Suman, S., Hussin, F. A., Malik, A. S., Walter, N., Goh, K. L., Hilmi, I., Ho, S. H.: Image Enhancement Using Geometric Mean Filter and Gamma Correction for WCE Images. International Conference on Neural Information Processing, 276–283 (2014).Google Scholar
  11. 11.
    Bezdek, J. C., Ehrlich, R., Full, W.: FCM The Fuzzy c-Means Clustering Algorithm. Computers Geosciences. 10, 191–203 (1984).CrossRefGoogle Scholar
  12. 12.
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision, Second Edition, Thomson Learning Inc. (2007).Google Scholar
  13. 13.
  14. 14.
  15. 15.
    Jaccard, P.: The Distribution of Flora in Alpine Zone. New Phytol. 11, 37–50 (1912).CrossRefGoogle Scholar
  16. 16.
    Dice, L.: Measures of the Amount of Ecologic Association between Species. Ecology. 26, 297–302 (1945).CrossRefGoogle Scholar
  17. 17.
    Shattuck, D. W., Prasad, G., Mirza, M., Narr, K. L., Toga, A. W.: Online resource for validation of brain segmentation methods. NeuroImage. 45, 431–439 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • T. Genish
    • 1
    Email author
  • K. Prathapchandran
    • 2
  • S. P. Gayathri
    • 3
  1. 1.Department of Computer ScienceKarpagam Academy of Higher EducationCoimbatoreIndia
  2. 2.Department of Computer Science and ApplicationsKarpagam Academy of Higher EducationCoimbatoreIndia
  3. 3.Department of Commerce (CA), PSGR Krishnammal College for WomenCoimbatoreIndia

Personalised recommendations