Advertisement

An Improvement to One’s BCM for the Balanced and Unbalanced Transshipment Problems by Using Fuzzy Numbers

  • Kirtiwant P. GhadleEmail author
  • Priyanka A. Pathade
  • Ahmed A. Hamoud
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

In this paper, we consider the pentagonal fuzzy number to solve the fuzzy transshipment problem. A new method namely, Ghadle and Pathade one’s best candidate method (BCM), is proposed. BCM is for finding optimal solution to a transshipment problem. Proposed method in this paper gives the remarkable solutions on balanced and unbalanced fuzzy transshipment problem. The method has been illustrated with the help of an example.

Keywords

Fuzzy transportation problem Fuzzy transshipment problem One’s BCM Fuzzy numbers Optimal solution 

Mathematics Subject Classification

03E72 

References

  1. 1.
    Baskaran, R., Dharmalingam, K.: Multi-objective fuzzy transshipment problem. Intern. J. Fuzzy Math. Archive. 10, 161–167 (2016).Google Scholar
  2. 2.
    Baskaran, R., Dharmalingam, K., Mohamed S.: Fuzzy transshipment problem with transit points. Intern. J. Pure Appl. Math. ( 2016)  https://doi.org/10.12732/ijpam.v107i4.22
  3. 3.
    Garg, R., Prakash, S.: Time minimizing transshipment problem. Indian J. Pure Appl. Math. 16, 449–460 (1985).MathSciNetzbMATHGoogle Scholar
  4. 4.
    Gani, A., Baskaran, R., Mohamed, S.: Mixed constraint fuzzy transshipment problem. Appl. Math. Sci. 6, 2385–2394 (2012).zbMATHGoogle Scholar
  5. 5.
    Kaufmann, A.: Introduction to the Theory of Fuzzy Sets. Academic Press, New York (1976).Google Scholar
  6. 6.
    Mohanpriya, S., Jeyanthi, V.: Modified procedure to solve fuzzy transshipment problem by using trapezoidal fuzzy number. Int. J. Math. and Stat. Inv. 4, 30–34 (2016).Google Scholar
  7. 7.
    Orden, A.: The transshipment problem. Management Sci. 2, 83–97 (1956).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Rajendran, P., Pandian, P.: Solving fully interval transshipment problems. Inter. Math. Forum. 7, 2027–2035 (2012).MathSciNetzbMATHGoogle Scholar
  9. 9.
    Zadeh, L.: Fuzzy sets. Inform. Contr. 8, 338–353 (1965).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kirtiwant P. Ghadle
    • 1
    Email author
  • Priyanka A. Pathade
    • 1
  • Ahmed A. Hamoud
    • 1
  1. 1.Department of MathematicsDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia

Personalised recommendations