Advertisement

Holder’s Inequalities for Analytic Functions Defined by Ruscheweyh-Type q-Difference Operator

  • N. Mustafa
  • K. VijayaEmail author
  • K. Thilagavathi
  • K. Uma
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

In this paper, we introduce a new generalized class of analytic functions based on Ruscheweyh-type q-difference operator. We obtain coefficient estimates, Holder’s inequality result, and integral means results for \(f\in \mathcal {TJ}_\mu ^\eta (\alpha ,\beta ,\gamma ,A,B).\)

References

  1. 1.
    Aghalary, R.,S. Kullkarni.: Some theorems on univalent functions, J. Indian Acad. Math, 24,1,81–93 (2002)MathSciNetGoogle Scholar
  2. 2.
    Araci,S., Duran,U., Acikgoz M., Srivastava, H. M.: A certain (p, q)-derivative operator and associated divided differences,J. Inequal. Appl.301 (2016)Google Scholar
  3. 3.
    Aral, A., Gupta, V. , Agarwal,R. P.: Applications of q-calculus in operator theory, Springer, New York, (2013)CrossRefGoogle Scholar
  4. 4.
    Cho, N. E., Kim, T. H., Owa ,S.: Generalizations of hadamard products of functions with negative coefficients, J. Math. Anal. Appl., 199, 495–501 (1996)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Jackson F. H. :On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh,46, 253–281 (1908)CrossRefGoogle Scholar
  6. 6.
    Kanas S. , Răducanu, D.: Some subclass of analytic functions related to conic domains, Math. Slovaca,64, 5, 1183–1196 (2014)Google Scholar
  7. 7.
    Khairanar, S. M. , Meena. : Certain family of analytic and univalent functions with normalized conditions, Acta Math. Acade. Paeda. Nyire, 24, 333–344 (2008)Google Scholar
  8. 8.
    Littlewood, J. E.: On inequalities in theory of functions, Proc. London Math. Soc., 23, 481–519 (1925)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Murugusundaramoorthy, G., Vijaya, K., Deepa ,K.: Holder inequalities for a subclass of univalent functions involving Dzoik Srivastava operator,Global Journal of Mathematical Analysis, 1(3),74–82 (2013)CrossRefGoogle Scholar
  10. 10.
    Nishiwaki, J., Owa, S., Srivastava ,H. M.:Convolution and Holder type inequalities for a certain class of analytic functions, Math. Inequal. Appl, 11, 717–727 (2008)zbMATHGoogle Scholar
  11. 11.
    Owa, S., Nishiwaki,J.: Coefficient estimates for certain classes of analytic functions, J. Inequal. Pure. Appl. Math, 3(5), Art.72 (2002)Google Scholar
  12. 12.
    . Purohit S. D., Raina,R. K : Fractional q-calculus and certain subclasses of univalent analytic functions, Mathematica 55,78, 1, 62–74 (2013)Google Scholar
  13. 13.
    Ruscheweyh St.: New criteria for univalent functions, Proc. Amer. Math. Soc. 49, 109–115 (1975) M.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Salah, J., Darus,M.: A subclass of uniformly convex functions associated with a fractional calculus operator involving Caputo’s fractional differentiation. Acta Universitatis Apulensis. No. 24, 295–304 (2010)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Silverman, H.: A survey with open problems on univalent functions whose coefficients are negative, Rocky Mt. J. Math., 21, 1099–1125 (1991)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Silverman, H.: Integral means for univalent functions with negative coefficients,Houston J. Math., 23, 169–174 (1997)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Silverman, H.: Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 109–116 (1975)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • N. Mustafa
    • 1
  • K. Vijaya
    • 2
    Email author
  • K. Thilagavathi
    • 2
  • K. Uma
    • 2
  1. 1.Department of MathematicsKafkas UniversityKarsTurkey
  2. 2.SAS, Department of MathematicsVITVelloreIndia

Personalised recommendations