On Intuitionistic Fuzzy \(\mathcal {C}\)-Ends

  • T. YogalakshmiEmail author
  • Oscar Castillo
Conference paper
Part of the Trends in Mathematics book series (TM)


Basic concepts related to disconnectedness in an intuitionistic fuzzy \(\mathcal {C}\)-ends are constructed. The conceptual ideas related to the intuitionistic fuzzy \(\mathcal {C}\)-centred system is introduced, and properties related to it are studied. Several preservation properties and characterizations concerning extremally disconnectedness in intuitionistic fuzzy \(\mathcal {C}\)-ends are discussed. Moreover, Tietze extension theorem is established with respect to the intuitionistic fuzzy \(\mathcal {C}\)-ends.


  1. 1.
    Atanassov,K.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems. 20, 87–96 (1986).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Atanassov,K., Gargov,G.: Elements of intuitionistic fuzzy logic. Fuzzy Sets and Systems. 95, 39–52 (1998).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chang,C.L.: Fuzzy topological spaces. J. Math. Anal. Appl.. 24, 182–190 (1968).MathSciNetCrossRefGoogle Scholar
  4. 4.
    Coker,D.: An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets and Systems. 88, 81–89 (1997).MathSciNetCrossRefGoogle Scholar
  5. 5.
    Coker,D., Demirci, M.: On intuitionistic fuzzy points. Notes IFS. 1, 79–84 (1995).MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dugundji,J.: Topology, Prentice Hall of India Private Limited, New Delhi (1975).Google Scholar
  7. 7.
    Fatteh,U.V., Bassan,D.S. : Fuzzy connectedness and its stronger forms. J. Math. Anal. Appl. 111, 449–464 (1985).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Iliadis,S., Fomin,S.: The method of centred systems in the theory of topological spaces.UMN. 21, 47–66 (1966).Google Scholar
  9. 9.
    Montiel Ross,O., Sepulveda Cruz,R., Castillo,O., Alper Basturk: High performance fuzzy systems for real world problems. Advances in fuzzy systems. (2012), 1–2.CrossRefGoogle Scholar
  10. 10.
    Montiel Ross,O., Camacho,J., Sepulveda Cruz,R., Castillo,O. : Fuzzy system to control the movement of a wheeled mobile robot. Soft computing for intelligent control and mobile robotics. (2011), 445–463.Google Scholar
  11. 11.
    Smets,P.: The degree of belief in a fuzzy event. Information Sciences. 25, 1–19 (1981).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sugeno,M.: An introductory survey of fuzzy control. Information Sciences. 36, 59–83 (1985).MathSciNetCrossRefGoogle Scholar
  13. 13.
    Uma,M.K., Roja,E., Balasubramanian,G.: A new characterization of fuzzy extremally disconnected spaces. Atti. Sem. Mat. Fis. Univ. Modenae Reggio Emilia. L III, 289–297 (2005).Google Scholar
  14. 14.
    Yogalakshmi,T., Roja,E., Uma,M.K.: A view on soft fuzzy C-continuous function. The Journal of Fuzzy Mathematics. 21(2), 349–370 (2013).MathSciNetzbMATHGoogle Scholar
  15. 15.
    Yogalakshmi,T.: Disconnectedness in soft fuzzy centred systems. International Journal of Pure and Applied Mathematics. 115(9), 223–229 (2017).Google Scholar
  16. 16.
    Zadeh,L.A.: Fuzzy sets. Inform and Control. 8, 338–353 (1965).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.SASVellore Institute of TechnologyVelloreIndia
  2. 2.Tijuana Institute TechnologyTijuanaMexico

Personalised recommendations