Local Countable Iterated Function Systems

  • A. Gowrisankar
  • D. EaswaramoorthyEmail author
Conference paper
Part of the Trends in Mathematics book series (TM)


This paper presents the extended notion of a local iterated function system (local IFS) to the general case of local countable iterated function system (local CIFS). Further, this paper establishes the approximation process of attractor of the local CIFS in terms of attractors of local IFS and discusses the relation between the attractors of CIFS and local CIFS.


Fractals Contraction Iterated function system 

MSC Classification codes:

26E50 28A80 47H10 


  1. 1.
    Barnsley, M.F., Hurd, L.P.: Fractal Image Compression. AK Peters, Ltd., Wellesley, Massachusetts (1993).zbMATHGoogle Scholar
  2. 2.
    Barnsley, M.F.: Fractals Everywhere. 3rd Edition, Dover Publications (2012).Google Scholar
  3. 3.
    Barnsley, M.F., Hegland, M., Massopust, P.: Numerics and fractals. Bulletin of the Institute of Mathematics. 9(3), 389–430 (2014).MathSciNetzbMATHGoogle Scholar
  4. 4.
    Easwaramoorthy, D., Uthayakumar, R.: Analysis on Fractals in Fuzzy Metric Spaces, Fractals. 19(3), 379–386 (2011).MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gowrisankar, A., Uthayakumar, R.: Fractional calculus on fractal interpolation function for a sequence of data with countable iterated function system. Mediterranean Journal of Mathematics. 13(6), 3887–3906 (2016).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hutchinson, J.E.: Fractals and self similarity. Indiana University Mathematics Journal. 30, 713–747 (1981).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Secelean, N.A.: Countable iterated function systems. Far East Journal of Dynamical Systems. 3(2), 149–167 (2001).MathSciNetzbMATHGoogle Scholar
  8. 8.
    Secelean, N.A.: Approximation of the attractor of a countable iterated function system. General Mathematics. 17(3), 221–231 (2009).MathSciNetzbMATHGoogle Scholar
  9. 9.
    Secelean, N.A.: The Existence of the Attractor of Countable Iterated Function Systems. Mediterranean Journal of Mathematics. 9 61–79 (2012).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Uthayakumar, R., Gowrisankar, A.: Fractals in product fuzzy metric space. Fractals, Wavelets and Their Applications. Springer Proceedings in Mathematics & Statistics. 92, 157–164 (2014).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics, School of Advanced SciencesVellore Institute of TechnologyVelloreIndia

Personalised recommendations