Advertisement

Coefficient Bounds of Bi-univalent Functions Using Faber Polynomial

  • T. JananiEmail author
  • S. Yalcin
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

In this research article, we study a bi-univalent subclass Σ related with Faber polynomial and investigate the coefficient estimate |an| for functions in the considered subclass with a gap series condition. Also, we obtain the initial two coefficient estimates |a2|, |a3| and find the Fekete–Szegö functional \(|a_3-a_2^2|\) for the considered subclass. New results which are further examined are also pointed out in this article.

References

  1. 1.
    Airault, H., Bouali, A.: Differential calculus on the Faber polynomials. Bulletin des Sciences Mathematiques. 130, no 3, 179–222 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Airault, H., Ren, J.: An algebra of differential operators and generating functions on the set of univalent functions. Bulletin des Sciences Mathematiques. 126, no 5, 343–367 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Altinkaya, S., Yalcin, S.: Faber polynomial coefficient bounds for a subclass of bi-univalent functions. Comptes Rendus Mathematique. 353, no 12, 1075–1080 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bouali, A.: Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions. Bulletin des Sciences Mathematiques. 130, no 1, 49–70 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brannan, D.A., Taha, T.S.: On some classes of bi-univalent functions. Studia Universitatis Babes-Bolyai Mathematica. 31, no 2, 70–77 (1986)Google Scholar
  6. 6.
    Çağlar, M., Orhan, H., Yağmur, N.: Coefficient bounds for new subclasses of bi-univalent functions. Filomat. 27, 1165–1171 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Duren, P.L.: Coefficients of meromorphic schlicht functions. Proceedings of the American Mathematical Society. 28, 169–172 (1971)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Duren, P.L.: Univalent functions. Springer Science and Business Media. 259, (2001)Google Scholar
  9. 9.
    Faber, G.: About polynomial evolutions. Mathematische Annalen. 57, no 3, 389–408 (1903)Google Scholar
  10. 10.
    Hamidi, S.G., Halim, S.A., Jahangiri, J.M.: Coefficient estimates for a class of meromorphic bi-univalent functions. Comptes Rendus Mathematique. 351, no 9, 349–352 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hamidi, S.G., Halim, S.A., Jahangiri, J.M.: Faber Polynomial Coefficient Estimates for Meromorphic Bi-Starlike Functions. International Journal of Mathematics and Mathematical Sciences. 2013, 1–4 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hamidi, S.G., Janani, T., Murugusundaramoorthy, G., Jahangiri, J.M.: Coefficient estimates for certain classes of meromorphic bi-univalent functions. Comptes Rendus Mathematique. 352, no 4, 277–282 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hussain, S., Khan, S., Zaighum, M.A., Darus, M., Shareef, Z.: Coefficients bounds for certain subclass of biunivalent functions associated with Ruscheweyh-Differential operator. Journal of Complex Analysis. article no 2826514 (2017).Google Scholar
  14. 14.
    Janani, T., Murugusundaramoorthy, G.: Inclusion results on subclasses of Starlike and Convex functions associated with Struve functions. Italian Journal of Pure and Applied Mathematics. 32, 467–476 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Khan, S., Khan, N., Hussain, S., Ahmad, Q.Z., Zaighum, M.A.: Some subclasses of bi-univalent functions associated with srivastava-attiya operator. Bulletin of Mathematical Analysis and Applications. 9, no 2, 37–44 (2017)Google Scholar
  16. 16.
    Lewin, M.: On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society. 18, 63–68 (1967)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Netanyahu, E.: The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Archive for Rational Mechanics and Analysis. 32, 100–112 (1969)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Srivastava, H.M., Mishra, A.K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters. 23, 1188–1192 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Srivastava, H.M., Bulut, S., Çağlar, M., Yağmur, N.: Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat. 27, 831–842 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Taha, T.S.: Topics in Univalent Function Theory. Ph.D. Thesis. University of London (1981)Google Scholar
  21. 21.
    Todorov, P.G.: On the Faber polynomials of the univalent functions of class. Journal of Mathematical Analysis and Applications. 162, no 1, 268–276 (1991)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Computer Science and Engineering, Vellore Institute of TechnologyVelloreIndia
  2. 2.Department of Mathematics, Faculty of Arts and ScienceUludag UniversityBursaTurkey

Personalised recommendations