Advertisement

Coefficient Bounds for a Subclass of m-Fold Symmetric λ-Pseudo Bi-starlike Functions

  • Jay M. Jahangiri
  • G. MurugusundaramoorthyEmail author
  • K. Vijaya
  • K. Uma
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

In this paper we consider a class of λ-pseudo bi-starlike functions defined by subordination and determine the upper bounds for the first two coefficients of m-fold symmetric functions in this class. We also determine upper bounds for the Fekete–Szegö coefficients of such m-fold symmetric functions. Our findings for certain cases improve some of the previously published results.

References

  1. 1.
    Babalola, K. O.: On λ −pseudo starlike functions, Journal of Classical Analysis, 3(2) 137–147(2013)Google Scholar
  2. 2.
    Bulut, S.: Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions,Turk J Math, 40 1386–1397(2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Duren,P. L.: Univalent functions, Springer-Verlag, New York, Berlin, Hiedelberg and Tokyo, 1983zbMATHGoogle Scholar
  4. 4.
    Eker,S.S.: Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turk. J Math., 40 641–646 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Frasin, B. A., Aouf,M. K.: New subclasses of bi-univalent functions, Appl. Math. Lett. 24 1569–1573 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Goyal, S. P., Goswami,P.: Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20 179–182(2012).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hamidi,S.G., Jahangiri,J.M Un-predictability of the coefficients of m-fold symmetric bi-starlike functions.Internat. J Math.,25 1450064 (2014) (8pages).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hayami, T., Owa,S.: Coefficient bounds for bi-univalent functions, Panamer. Math. J., 22 (4) 15–26(2012).Google Scholar
  9. 9.
    Jahangiri, J. M., Hamidi,S. G: Coefficient estimates for certain classes of bi-univalent functionsInternat. J. Math., and Math. Sci., (2013), Article ID 190560.Google Scholar
  10. 10.
    Jahangiri, J. M., Hamidi,S. G.: Advances on the coefficient bounds for m-fold symmetric bi-close-to-convex functions, Tbilisi Math. J., 9 (2) 75–82 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Joshi, S., Joshi,S., Pawar,H.: On some subclasses of bi-univalent functions associated with pseudo-starlike function, J. Egyptian Math. Soc. 24 522–525 (2016).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pommerenke,Ch.: On the coefficients of close-to-convex functions, Michigan.Math.J. 9 259–269(1962).MathSciNetCrossRefGoogle Scholar
  13. 13.
    Srivastava,H. M., Mishra A. K., Gochhayat,P.: Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23(10) 1188–1192 (2010).MathSciNetCrossRefGoogle Scholar
  14. 14.
    Srivastava,H. M., Bulut,S., Cagler, M., Yagmur,N.:Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat. 27 831–842 (2013).MathSciNetCrossRefGoogle Scholar
  15. 15.
    Srivastava, H.M., Sivasubramanian,S., Sivakumar,R.:Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. Tbilisi Math. J.,71–10 (2014)Google Scholar
  16. 16.
    Srivastava,H. M., Gaboury, S., Ghanim,F.: Coefficient estimates for some subclasses of m−fold symmetric bi-univalent functions, Acta Univ. Apulensis Math. Inform. 41 153–164(2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Tang,H.,Srivastava,H.M.,Sivasubramanian, S.,Gurusamy,P.: The Fekete–Szegö functional problems for some subclasses of m −fold symmetric bi-univalent functions Journal of Mathematical Inequalities 10,(4)1063–1092 (2016)Google Scholar
  18. 18.
    Zaprawa,P.: On the Fekete–Szegö problem for classes of bi-univalent functions,Bull. Belg. Math. Soc. Simon Stevin 21(1) 1–192 (2014).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jay M. Jahangiri
    • 1
  • G. Murugusundaramoorthy
    • 2
    Email author
  • K. Vijaya
    • 2
  • K. Uma
    • 2
  1. 1.Mathematical SciencesKent State UniversityBurtonUSA
  2. 2.Department of Mathematics, School of Advanced SciencesVITVelloreIndia

Personalised recommendations