Advertisement

Common Fixed Point Theorems in 2-Metric Spaces Using Composition of Mappings via A-Contractions

  • J. Suresh Goud
  • P. Rama Bhadra Murthy
  • Ch. Achi Reddy
  • K. Madhusudhan ReddyEmail author
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

The paper contains two common fixed point theorems using composition of self-mappings via the notion of A-contractions. The first theorem deals with the common fixed points of three self-maps via A-contractions where the contractive condition depends on the composition of self-maps. Then we proved a common fixed point theorem for an arbitrary set of self-maps. Examples are presented to show the significance of our results.

Keywords

A-contractions Common fixed points Arbitrary set of self-maps 

MSC Subject Classification:

47H10 54H25 

References

  1. 1.
    Akram,M., Siddiqui,A.A. :A fixed point theorem for A − contractions on a class of generalized metric spaces. Korean J. Math. Sciences.10, 1–5 (2003).Google Scholar
  2. 2.
    Akram,M.,Zafar,A.A., Siddiqui,A.A. :A general class of contractions: A − contractions. Novi Sad J. Math. 38, 25–33 (2008).Google Scholar
  3. 3.
    Akram,M.,Zafar,A.A., Siddiqui,A.A. :Common fixed point theorems for self maps of a generalized metric space satisfying A-contraction type condition. Int. Journal of Math. Analysis. 5, 757–763 (2011).Google Scholar
  4. 4.
    Vinod Bharadwaj,K., Vishal Gupta, Raman Deep.:Some Fixed Point Results for A − contractions in 2-metric spaces and their applications.Miskole Mathematical Notes, 16, 679–694, (2015).MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gahler,V.S. :2-metrische Raume und ihre topologisehe Struktur. Math. Nachr. 26, 115–118 (1962).Google Scholar
  6. 6.
    Vishal Gupta, Ramandeep Kaur.:Some Common Foxed Point Theorems For a Class of A − contractions on 2-metric space.Int. J. Pure and Appl. Math. 78, 909–916 (2012).Google Scholar
  7. 7.
    Naidu,S.V.R., Rajendra Prasad,J.:Fixed point theorems in 2-metric spaces. Indian J. pure appl. Math. 17, 974–993 (1986).Google Scholar
  8. 8.
    Mantu Saha, Debashis Dey.:Fixed Point Theorems For a class of A − contractions on a 2-metric space. Novi Sad J. Math. 40, 3–8 (2010).Google Scholar
  9. 9.
    Kiyoshi Iseki.:Fixed point theorems in 2-metric spaces.Math.scm Notes. 3, (1975).Google Scholar
  10. 10.
    Khan,M. S.:On Fixed point theorems in 2-metric space.publ.Inst.math.(Beograd)(NS). 41, 107–112 (1980).Google Scholar
  11. 11.
    Lal,S. N.,Singh,A. K.:An analogue of Banach’s contraction principle for 2-metric spaces.Buletin of the Australian mathematical society. 8, 137–143 (1978).Google Scholar
  12. 12.
    Rhoades,B. E.:contraction type mappings on a 2-metric space. math. Nachr. 91, 151–155 (1979).MathSciNetCrossRefGoogle Scholar
  13. 13.
    Singh,S. L.,Tiwari,B. M. L., Gupta,V. K. :common Fixed points of commuting mappings in 2-metric spaces an application. math. Nachr. 95, 293–297 (1980).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • J. Suresh Goud
    • 1
  • P. Rama Bhadra Murthy
    • 2
  • Ch. Achi Reddy
    • 3
  • K. Madhusudhan Reddy
    • 4
    Email author
  1. 1.Department of MathematicsInstitute of Aeronautical EngineeringHyderabadIndia
  2. 2.Department of MathematicsOsmania UniversityHyderabadIndia
  3. 3.Department of MathematicsMLR Institute of TechnologyHyderabadIndia
  4. 4.Department of MathematicsVellore Institute of TechnologyVelloreIndia

Personalised recommendations