Gorenstein FI-Flat Complexes and (Pre)envelopes

Conference paper
Part of the Trends in Mathematics book series (TM)


In this paper, Gorenstein FI-flat complexes are introduced, and their characteristics are studied over a \(\mathcal {GFI}_{\mathcal {F}}\)-closed ring. Also this paper proves that every complex of R-modules has a Gorenstein FI-flat complex preenvelope over a \(\mathcal {GFI}_{\mathcal {F}}\)-closed ring.


  1. 1.
    Auslander. M.: Anneaux de Gorenstein, et torsion en algebre commutative. Seminaire d’Algebre Commutative dirige par Pierre Samuel. Secretariat mathematique. Paris (1967)Google Scholar
  2. 2.
    Auslander. M and Bridger.M.: Stable Module Theory. Memoirs. Amer. Math. Soc. Vol. 94, Providence, RI: Amer. Math. Soc., (1969).Google Scholar
  3. 3.
    Meggiben. C.:Absolutely Pure modules, Proc. Amer. Math. Soc., 26, 561–566 (1970).MathSciNetCrossRefGoogle Scholar
  4. 4.
    Rotman J. J.: An Introduction to Homological Algebra. Academic Press, 1979.Google Scholar
  5. 5.
    Enochs E.: Injective and flat covers, envelopes and resolvents. Israel J. of Math. 39 189–209 (1981).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Enochs E. and Lopez J.A.-Ramos: Kapalansky classes. Rend. Semin. Mat. Univ.Padova. 107, 67–79 (2002).Google Scholar
  7. 7.
    Holm H.: Gorenstein homological dimensions. J. Pure Appl. Algebra. 189, 167–193 (2004).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Mao L. and Ding N.: FI-injective and FI-flat modules. J. Algebra. 209, 367–385 (2007).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Enochs E.: Cartan-Eilenberg, complexes and resolutions. J.Algebra, 342,16–39 (2011).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Selvaraj C., Biju V. and Udhayakumar R.: Stability of Gorenstein F I-flat mod-ules. Far East J. of Math. 95, (2), 159–168 (2014).zbMATHGoogle Scholar
  11. 11.
    Gangyang and Li Liang : Carten-Eilenberg Gorenstein Flat complexes. Math. Scand. 114, 5–25 (2014).Google Scholar
  12. 12.
    Selvaraj C., Biju V. and Udhayakumar R.: Gorenstein FI-flat (pre)covers. Gulf J. of Math. 3, 46–58 (2015).MathSciNetzbMATHGoogle Scholar
  13. 13.
    Biju V. and Udhayakumar R.: FI-flat Resolutions and Dimensions. Global Journal of Pure and Applied Mathematics. 12, 808–811 (2016).zbMATHGoogle Scholar
  14. 14.
    Selvaraj C., Biju V. and Udhayakumar R.: Gorenstein FI-flat Dimension and Tate Homology. Vietnam. J. Math. 44, 679–695 (2016).MathSciNetCrossRefGoogle Scholar
  15. 15.
    Vasudevan B., Udhayakumar R. and Selvaraj C.: Gorenstein FI-flat dimension and Relative Homology. Afrika Matematika. 28, 1143–1156 (2017).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics, School of Advanced SciencesVITVelloreIndia

Personalised recommendations