Biomolecular Targets of Oxyprenylated Phenylpropanoids and Polyketides

  • Serena Fiorito
  • Francesco EpifanoEmail author
  • Francesca Preziuso
  • Vito Alessandro Taddeo
  • Salvatore Genovese
Part of the Progress in the Chemistry of Organic Natural Products book series (POGRCHEM, volume 108)


Oxyprenylated secondary metabolites (e.g. phenylpropanoids and polyketides) represent a rare class of natural compounds. Over the past two decades, this group of phytochemicals has become a topic of intense research activity by several teams worldwide due to their in vitro and in vivo pharmacological activities, and to their great therapeutic and nutraceutical potential for the chemoprevention of acute and chronic diseases affecting humans. Such investigations have provided evidence that oxyprenylated secondary metabolites are able to interact with several biological targets at different levels accounting for their observed anticarcinogenic, anti-inflammatory, neuroprotective, immunomodulatory, antihypertensive, and metabolic effects. The aim of the present contribution is to provide a detailed survey of the so far reported data on the capacities of selected oxyprenylated phenylpropanoids and polyketides to trigger receptors, enzymes, and other types of cellular factors for which they exhibit a high degree of affinity and therefore evoke specific responses. With respect to the rather small amounts of these compounds available from natural sources, their chemical synthesis is also highlighted.


Apiaceae Biological targets Cancer Coumarins Inflammation Neuroprotection Oxyprenylated secondary metabolites Rutaceae 


  1. 1.
    Epifano F, Genovese S, Menghini L, Curini M (2007) Chemistry and pharmacology of oxyprenylated secondary plant metabolites. Phytochemistry 68:93CrossRefGoogle Scholar
  2. 2.
    Karyione T, Matsuno T (1932) Studies on the constituents of orange oil. On the structure of auraptene. Pharm Bull 1:19Google Scholar
  3. 3.
    Epifano F, Fiorito S, Carlucci G, Locatelli M, Genovese S (2013) Phytochemistry and pharmacognosy of naturally occurring prenyloxyanthraquinones. Curr Drug Targets 14:959PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Mbaveng AT, Kuete V, Nguemeving JR (2008) Antimicrobial activity of the extracts and compounds obtained from Vismia guineensis (Guttiferae). Asian J Trad Med 3:211Google Scholar
  5. 5.
    Sim WC, Ee GCL, Lim CJ (2011) Cratoxylum glaucum and Cratoxylum arborescens (Guttiferae) two potential sources of antioxidant agents. Asian J Chem 23:569Google Scholar
  6. 6.
    Narender T, Sukanya P, Sharma K, Bathula SR (2013) Apoptosis and DNA intercalating activities of novel emodin derivatives. RSC Adv 3:6123CrossRefGoogle Scholar
  7. 7.
    Amonkar A, Chang CJ, Cassady JM (1981) 6-Geranyloxy-3-methyl-1,8-dihydroxyanthrone, a novel antileukemic agent from Psorospermum febrifugum Sprach var. ferrugineum (Hook. fil.). Experientia 37:1138Google Scholar
  8. 8.
    Ndjakou Lenta B, Devkota KP, Ngouela S, Fekam Boyom F, Naz Q, Choudhary MI, Tsamo E, Rosenthal PJ, Sewald N (2008) Anti-plasmodial and cholinesterase inhibiting activities of some constituents of Psorospermum glaberrimum. Chem Pharm Bull 56:222PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Ritchie E, Taylor WG (1964) Constituents of Harungana (Haronga) madagascariensis. Tetrahedron Lett 23–24:1431CrossRefGoogle Scholar
  10. 10.
    Camele G, Delle Monache F, Delle Monache G, Marini Bettolo GB, Alves de Lima R (1982) Chemistry of the Vismia genus. Part 8. 2-Isoprenylemodin and 5,5′-dimethoxysesamin from Vismia guaramirangae. Phytochemistry 21:417CrossRefGoogle Scholar
  11. 11.
    Nagem TJ, Faria TJ (1990) Quinonoid and other constituents from Vismia martiana. Phytochemistry 29:3382CrossRefGoogle Scholar
  12. 12.
    Nagem TJ, Alves VL (1995) Constituents of Vismia magnoliifolia. Fitoterapia 66:278Google Scholar
  13. 13.
    Bilia AR, Yusuf AW, Braca A, Keita M, Morelli I (2000) New prenylated anthraquinones and xanthones from Vismia guineensis. J Nat Prod 63:16PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Nagem TJ, de Oliveira FF (1997) Xanthones and other constituents of Vismia parviflora. J Braz Chem Soc 8:505CrossRefGoogle Scholar
  15. 15.
    Delle Monache G, Delle Monache F, Di Benedetto R, Ogukawa JU (1987) Chemistry of the Psorospermum genus. Part 5. New metabolites from Psorospermum tenuifolium. Phytochemistry 26:2611CrossRefGoogle Scholar
  16. 16.
    Botta B, Delle Monache F, Delle Monache G, Menichini F (1988) Chemistry of the Psorospermum genus. Part 7. Psorolactones and other metabolites from Psorospermum glaberrimum. Tetrahedron 44:7193CrossRefGoogle Scholar
  17. 17.
    Tsaffack M, Nguemeving JR, Kuete V (2009) Two new antimicrobial dimeric compounds: febriquinone, a vismione-anthraquinone coupled pigment and adamabianthrone, from two Psorospermum species. Chem Pharm Bull 57:1113PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Boonsri S, Karalai C, Ponglimanont C, Kanjana-Opas A, Chantrapromma K (2006) Antibacterial and cytotoxic xanthones from the roots of Cratoxylum formosum. Phytochemistry 67:723PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Epifano F, Genovese S, Kremer M, Randic M, Carlucci G, Locatelli M (2012) Re-investigation of the anthraquinone pool of Rhamnus spp.: madagascin from the fruits of Rhamnus cathartica and R. intermedia. Nat Prod Commun 7:1029PubMedPubMedCentralGoogle Scholar
  20. 20.
    Locatelli M, Genovese S, Carlucci G, Kremer D, Randic M, Epifano F (2012) Development and application of high-performance liquid chromatography for the study of two new oxyprenylated anthraquinones produced by Rhamnus spp. J Chromatogr A 1225:113PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Genovese S, Epifano F, Curini M, Kremer D, Carlucci G, Locatelli M (2012) Screening for oxyprenylated anthraquinones in Mediterranean Rhamnus species. Biochem Syst Ecol 43:125CrossRefGoogle Scholar
  22. 22.
    Kremer D, Kosalec I, Locatelli M, Epifano F, Genovese S, Carlucci G, Zovko Koncic M (2012) Amthraquinone profiles, antioxidant, and antimicrobial properties of Frangula rupestris (Scop.) Schur. and Frangula alnus Mill. bark. Food Chem 131:1174CrossRefGoogle Scholar
  23. 23.
    Chen D, Lv B, Kobayashi S, Xiong Y, Sun P, Lin Y, Genovese S, Epifano F, Hou S, Tang F, Ji Y, Yu D (2016) Madagascine induces vasodilation via activation of AMPK. Front Pharmacol 7:435PubMedPubMedCentralGoogle Scholar
  24. 24.
    Luo Z, Zang M, Guo W (2010) AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol 6:457PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Genovese S, Epifano F (2011) Auraptene: a natural biologically active compound with multiple targets. Curr Drug Targets 12:381PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Kawabata K, Murakami A, Ohigashi H (2006) Citrus auraptene targets translation of MMP-7 (matrylisin) via ERK 1/2-dependent and mTOR-independent mechasnism. FEBS Lett 580:5288PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Moon JY, Kim H, Cho SK (2015) Auraptene, a major compound of supercritical fluid extract of Phalsak (Citrus hassaku Hort. ex Tanaka), induces apoptosis through the suppression of mTOR pathways in human gastric cancer SNU-1 cells. Evid Based Compl Altern Med 2015:ID 402385Google Scholar
  28. 28.
    Jun DY, Kim JS, Park HS, Han CR, Fang Z, Woo MH, Rhee IK, Kim YH (2007) Apoptogenic activity of auraptene of Zanthoxylum schinifolium toward human acute leukemia Jurkat T cells is associated with ER-stress mediated caspase-8 activation that stimulates mithochondria-dependent or independent caspase cascade. Carcinogenesis 28:1303PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Lee JC, Shin EA, Kim B, Kim BI, Chitsazian-Yasdi M, Iranshahi M, Kim SH (2017) Auraptene induces apoptosis via myeloid cell leukemia 1-mediated activation of caspase in PC3 and DU145 prostate cancer cells. Phytother Res 31:891PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Jang Y, Han J, Kim SJ, Kim J, Lee MJ, Jeong S, Ryu MJ, Seo KS, Choi SY, Shong M, Lim K, Heo JY, Kweon GR (2015) Suppression of mitochondrial respiration with auraptene inhibits the progression of renal cell carcinoma: involvement of HIF-1a degradation. Oncotarget 6:38127PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    De Medina P, Genovese S, Paillasse MR, Mazaheri M, Caze-Subra S, Bystrcky K, Curini M, Silvente-Poirot S, Epifano F, Poirot S (2010) Auraptene is an inhibitor of cholesterol esterification and a modulator of estrogen receptors. Mol Pharmacol 78:827PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Khrishnan P, Kleiner-Hancock H (2012) Effects of auraptene on IGF-1 stimulated cell cycle progression in the human breast cancer cell line, MCF-7. Int J Breast Cancer 2012: ID 502092Google Scholar
  33. 33.
    Nabekura T, Yamaki T, Kitagawa S (2008) Effects of chemopreventive citrus phytochemicals on human P-glycoprotein and multidrug resistance protein 1. Eur J Pharmacol 600:45PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Prince M, Li Y, Childers A, Itoh K, Yamamoto M, Kleiner-Hancock H (2009) Comparison of citrus coumarins on carcinogen-detoxifying enzymes in Nrf2 knockout mice. Toxicol Lett 185:180PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Epifano F, Genovese S, Miller R, Majumdar APN (2013) Auraptene and its effects on the re-emergence of colon cancer stem cells. Phytother Res 27:784PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Saboor-Maleki S, Rassouli FB, Matin MM, Iranshahi M (2016) Auraptene attenuates malignant properties of esophageal stem-like cancer cells. Technol Cancer Res Treat 16:519PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Murakami A, Shigemori T, Ohigashi H (2005) Zingiberaceous and Citrus constituents, 1-acetoxychavicol acetate, zerumbone, auraptene, and nobiletin, suppress lipopolysaccharide- induced cyclooxygenase-2 expression in RAW264.7 murine macrophages through different modes of action. J Nutr 135:2987SPubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kawabata K, Murakami A, Ohigashi H (2006) Auraptene decreases the activity of matrix metalloproteinases in dextran sulfate sodium-induced ulcerative colitis in ICR mice. Biosci Biotechnol Biochem 70:3062PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Lin S, Hirai S, Goto T, Sakamoto T, Takahashi N, Yano M, Sasaki T, Yu R, Kawada T (2013) Auraptene suppresses inflammatory responses in activated RAW264 macrophages by inhibiting p38 mitogen-activated protein kinase activation. Mol Nutr Food Res 57:1135PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    La VD, Zhao L, Epifano F, Genovese S, Grenier D (2013) Anti-inflammatory and wound healing potential of Citrus auraptene. J Med Food 16:961PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Adams DH, Shou Q, Wohlmuth H, Cowin AJ (2016) Native Australian plant extracts differentially induce Collagen I and Collagen III in vitro and could be important targets for the development of new wound healing therapies. Fitoterapia 109:45PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Furukawa Y, Watanabe S, Okuyama S, Nakajima M (2012) Neurotrophic effect of Citrus auraptene: neuritogenic activity in PC12 cells. Int J Mol Sci 13:5338PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Nakajima M, Shimizu R, Furuta K, Sugino M, Watanabe T, Aoki R, Okuyama S, Furukawa Y (2016) Auraptene induces oligodendrocyte lineage precursor cells in a cuprizone-induced animal model of demyelination. Brain Res 1639:28PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Okuyama S, Morita M, Kaji M, Amakura Y, Yoshimura M, Shimamoto K, Ookido Y, Nakajima M, Furukawa Y (2015) Auraptene acts as an anti-inflammatory agent in the mouse brain. Molecules 20:20230PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Okuyama S, Semba T, Toyoda N, Epifano F, Genovese S, Fiorito S, Taddeo VA, Sawamoto A, Nakajima M, Furukawa Y (2016) Auraptene and other prenyloxyphenylpropanoids suppress microglial activation and dopaminergic neuronal cell death in a lipopolysaccharide-induced model of Parkinson’s disease. Int J Mol Sci 17:1716PubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hasan M, Genovese S, Fiorito S, Epifano F, Witt-Enderby PA (2017) Oxyprenylated phenylpropanoids bind to MT1 melatonin receptors and inhibit breast cancer cell proliferation and migration. J Nat Prod 80:3324PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Nagao K, Yamano N, Shirouchi B, Inoue N, Murakami S, Sasaki T, Yanagita T (2010) Effects of citrus auraptene (7-geranyloxycoumarin) on hepatic lipid metabolism in vitro and in vivo. J Agric Food Chem 58:9028PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Genovese S, Ashida H, Yamashita Y, Nakgano T, Ikeda M, Daishi S, Epifano F, Taddeo VA, Fiorito S (2017) The interaction of auraptene and other oxyprenylated phenylpropanoids with glucose transporter type 4. Phytomedicine 32:74PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kuroyanagi K, Kang MS, Goto T, Hirai S, Ohyama K, Kusudo T, Yu R, Yano M, Sasaki T, Takahashi N, Kawada T (2008) Citrus auraptene acts as an agonist for PPARs and enhances adiponectin production and MCP-1 reduction in 3T3-L1 adipocytes. Biochem Biophys Res Commun 366:219PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Takahashi N, Kang MS, Kuroyanagi K, Goto T, Hirai S, Lee JY, Yu R, Yano M, Sasaki T, Murakami S, Kawada T (2008) Auraptene, a citrus fruit compound, regulates gene expression as a PPARα agonist in HepG2 hepatocytes. Biofactors 33:25PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Takahashi N, Senda M, Lin S, Goto T, Yano M, Sasaki T, Murakami S, Kawada T (2011) Auraptene regulates gene expression involved in lipid metabolism through PPARa activation in diabetic obese mice. Mol Nutr Food Res 55:1791PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Epifano F, Genovese S, Squires JE, Gray MA (2012) Nelumal A, the active principle from Ligularia nelumbifolia, is a novel farnesoid X receptor agonist. Bioorg Med Chem Lett 22:3130PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Gao X, Fu T, Wang C, Ning C, Kong Y, Liu Z, Sun H, Ma X, Liu K, Meng Q (2017) Computational discovery and experimental verification of farnesoid X receptor agonist auraptene to protect against cholestatic liver injury. Biochem Pharmacol 146:127PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Gao X, Wang C, Ning C, Liu K, Wang X, Liu Z, Sun H, Ma X, Sun P, Meng Q (2018) Hepatoprotection of auraptene from peels of citrus fruits against thioacetamide-induced hepatic fibrosis in mice by activating farnesoid X receptor. Food Funct.
  55. 55.
    Hung WL, Suh JH, Wang Y (2017) Chemistry and health effects of furanocoumarins in grapefruit. J Food Drug Anal 25:71PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    He K, Iyer KR, Hayes RN, Sinz MW, Woolf TF, Hollenberg PF (1998) Inactivation of cytochrome P450 3A4 by bergamottin, a component of grapefruit juice. Chem Res Toxicol 11:252PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Tassaneeyakul W, Guo LQ, Fukuda K, Ohta T, Yamazoe Y (2000) Inhibition selectivity of grapefruit juice components on human cytochromes P450. Arch Biochem Biophys 378:356PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Lim HK, Duczak Jr. N, Brougham L, Elliot M, Patel K, Chan K (2005) Automated screening with confirmation of mechanism-based inactivation of CYP3A4, CYP2C9, CYP2C19, CYP2D6, and CYP1A2 in pooled human liver microsomes. Drug Metab Dispos 33:1211Google Scholar
  59. 59.
    Girennavar BA, Jayaprakasha GK, Patil BS (2007) Potent inhibition of human cytochrome P450 3A4, 2D6, and 2C9 isoenzymes by grapefruit juice and its furocoumarins. Food Chem Toxicol 72:417Google Scholar
  60. 60.
    Wen YH, Sahi J, Urda E, Kulkarni S, Rose K, Zheng X, Sinclair JF, Cai H, Strom SC, Kostrubsky VE (2002) Effects of bergamottin on human and monkey drug metabolizing enzymes in primary cultured hepatocytes. Drug Metab Dispos 30:977PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Olguin-Reyes S, Camacho-Carranza R, Hernandez-Ojeda S, Elinos-Baez M, Espinosa-Aguirre JJ (2012) Bergamottin is a competitive inhibitor of CYP1A1 and is antimutagenic in the Ames test. Food Chem Toxicol 50:3094PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Lin HL, Kent UM, Hollenberg PF (2005) The grapefruit juice effect is not limited to cytochrome P450 (P450) 3A4: evidence for bergamottin-dependent inactivation, heme destruction, and covalent binding to protein in P450s 2B6 and 3A5. J Pharmacol Exp Ther 313:154PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kent UM, Lin HL, Noon KR, Harris DL, Hollenberg PF (2006) Metabolism of bergamottin by cytochromes P4502B6 and 3A5. J Pharmacol Exp Ther 318:992PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Girennavar BA, Poulose SM, Jayaprakasha GK, Bhat NG, Patil BS (2006) Furocoumarins from grapefruit juice and their effect on human CYP 3A4 and CYP 1B1 isoenzymes. Bioorg Med Chem 14:2606PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Le Goff-Klein N, Koffel JC, Jung L, Ubeaud G (2003) In vitro inhibition of simvastatin metabolism, a HMG-CoA reductase inhibitor in human and rat liver by bergamottin, a component of grapefruit juice. Eur J Pharm Sci 18:31PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Le Goff-Klein N, Klein L, Herin M, Koffel JC, Ubeaud G (2004) Inhibition of in-vitro simvastatin metabolism in rat liver microsomes by bergamottin, a component of grapefruit juice. J Pharm Pharmacol 56:1007PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Cesar TB, Manthey JA, Myung K (2009) Minor furanocoumarins and coumarins in grapefruit peel oil as inhibitors of human cytochrome P450 3A4. J Nat Prod 72:1702PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Baumgart A, Schmidt M, Schmitz HJ, Schrenk D (2005) Natural furocoumarins as inducers and inhibitors of cytochrome P450 1A1 in rat hepatocytes. Biochem Pharmacol 69:657PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Sasaki M, Elrod JW, Jordan P, Itoh M, Joh T, Minagar A, Alexander JS (2004) CYP450 dietary inhibitors attenuate TNF-α-stimulated endothelial molecule expression and leukocyte adhesion. Am J Physiol Cell Physiol 286:931CrossRefGoogle Scholar
  70. 70.
    Hung WL, Suh JH, Wang Y (2017) Chemistry and health effects of furanocoumarins in grapefruit. J Food Drug Anal 25:71PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Cai Y, Kleiner H, Johnston D, Dubowski A, Bostic S, Ivie W, DiGiovanni J (1997) Effect of naturally occurring coumarins on the formation of epidermal DNA adducts and skin tumors induced by benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene in SENCAR mice. Carcinogenesis 18:1521PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Kleiner HE, Vulimiri VS, Reed MJ, Uberecken A, DiGiovanni J (2002) Role of cytochrome P450 1a1 and 1b1 in the metabolic activation of 7,12-dimethylbenz[a]anthracene and the effects of naturally occurring furanocoumarins on skin tumor initiation. Chem Res Toxicol 15:226PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Kleiner HE, Reed MJ, DiGiovanni J (2003) Naturally occurring coumarins inhibit human cytochromes P450 and block benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene DNA adduct formation in MCF-7 cells. Chem Res Toxicol 16:415PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Pan ST, Li ZL, He ZX, Qiu JX, Zhou SF (2016) Molecular mechanisms for tumour resistance to chemotherapy. Clin Exp Pharmacol Physiol 43:723PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Ikegawa T, Ushigome F, Koyabu N, Morimoto S, Shoyama Y, Naito M, Tsuruo T, Ohtani H, Sawada Y (2000) Inhibition of P-glycoprotein by orange juice components, polymethoxyflavones in adriamycin-resistant human myelogenous leukemia (K562/ADM) cells. Cancer Lett 160:21PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Honda Y, Ushigome F, Koyabu N, Morimoto S, Shoyama Y, Uchiumi T, Kuwano N, Ohtani H, Sawada Y (2004) Effects of grapefruit juice and orange juice components on P-glycoprotein- and MRP2-mediated drug efflux. Br J Pharmacol 143:856PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    de Castro WV, Mertens-Talcott S, Derendorf H, Butterweck V (2008) Effect of grapefruit juice, naringin, naringenin, and bergamottin on the intestinal carrier-mediated transport of talinolol in rats. J Agric Food Chem 56:4840PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Hochman JH, Chiba M, Yamazaki M, Tang C, Lin JH (2001) P-glycoprotein-mediated efflux of indinavir metabolites in Caco-2 cells expressing cytochrome P450 3A4. J Pharmacol Exp Ther 298:323PubMedPubMedCentralGoogle Scholar
  79. 79.
    Pormohammad A, Ghotaslo R, Leylabadlo HE, Nasiri MJ, Dabiri H, Hashemi A (2018) Risk of gastric cancer in association with Helicobacter pylori different virulence factors: a systematic review and meta-analysis. Microb Pathogen 118:214CrossRefGoogle Scholar
  80. 80.
    Sekiguchi H, Washida K, Murakami A (2008) Suppressive effects of selected food phytochemicals on CD74 expression in NCI-N87 gastric carcinoma cells. J Clin Biochem Nutr 43:109PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Hwang YP, Yun HJ, Choi JH, Kang KW, Jeong HG (2010) Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by bergamottin via the inhibition of protein kinase Cδ/p38 mitogen-activated protein kinase and JNK/nuclear factor-kB-dependent matrix metalloproteinase-9 expression. Mol Nutr Food Res 54:977PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kim SM, Lee JH, Sethi G, Kim C, Baek SH, Nam D, Chung WS, Kim SH, Shim BS, Ahn KS (2014) Bergamottin, a natural furanocoumarin obtained from grapefruit juice induces chemosensitization and apoptosis through the inhibition of STAT3 signaling pathway in tumor cells. Cancer Lett 354:153PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Wu HJ, Wu HB, Zhiao YQ, Chen LJ, Zou HZ (2016) Bergamottin isolated from Citrus bergamia exerts in vitro and in vivo antitumor activity in lung adenocarcinoma through the induction of apoptosis, cell cycle arrest, mitochondrial membrane potential loss and inhibition of cell migration and invasion. Oncol Rep 36:324PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Kim SM, Lee EJ, Lee JH, Yang WM, Nam D, Lee JH, Lee SG, Um JY, Shim BS, Ahn KS (2016) Simvastatin in combination with bergamottin potentiates TNF-induced apoptosis through modulation of NF-κB signalling pathway in human chronic myelogenous leukaemia. Pharm Biol 54:2050PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S (2017) A review of the composition of the essential oils and biological activities of Angelica species. Sci Pharm 85:33PubMedCentralCrossRefGoogle Scholar
  86. 86.
    Shin KH, Chung MS, Cho TS (1994) Effect of furanocoumarins from Angelica dahurica on aldose reductase and galactosemic cataract formation in rats. Arch Pharmacal Res 17:331CrossRefGoogle Scholar
  87. 87.
    Shin KH, Lim SS, Kim DK (1998) Effect of byakangelicin, an aldose reductase inhibitor, on galactosemic cataracts, the polyol contents and Na+, K+ATPase activity in sciatic nerves of streptozotocin-induced diabetic rats. Phytomedicine 5:121PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Yang J, Luan X, Gui H, Yan P, Yang D, Song X, Liu W, Hu G, Yan B (2011) Byakangelicin induces cytochrome P450 3A4 expression via transactivation of pregnane X receptors in human hepatocytes. Br J Pharmacol 162:441PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lin CH, Chang CW, Wang CC, Chang MS, Yang LL (2002) Byakangelicol, isolated from Angelica dahurica, inhibits both the activity and induction of cyclooxygenase-2 in human pulmonary epithelial cells. J Pharm Pharmacol 54:1271PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Iwanaga K, Hayashi M, Hamahata Y, Miyazaki M, Shibano M, Taniguchi M, Baba K, Kakemi M (2010) Furanocoumarin derivatives in Kampo extract medicines inhibit cytochrome P450 3A4 and P-glycoprotein. Drug Metab Dispos 38:1286PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Iwanaga K, Yoneda S, Hamahata Y, Miyazaki M, Shibano M, Taniguchi M, Baba K, Kakemi M (2011) Inhibitory effects of furanocoumarin derivatives in Kampo extract medicines on P-glycoprotein at the blood–brain barrier. Biol Pharm Bull 34:1246PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Marumoto S, Miyazawa M (2010) Secretase inhibitory effects of furanocoumarins from the root of Angelica dahurica. Phytother Res 24:510PubMedPubMedCentralGoogle Scholar
  93. 93.
    Kumar D, Ganeshpurkar A, Kumar D, Modi G, Gupta SK, Singh SK (2018) Secretase inhibitors for the treatment of Alzheimer’s disease: long road ahead. Eur J Med Chem 48:436CrossRefGoogle Scholar
  94. 94.
    Shikov AN, Pozharitskaya ON, Makarov VG, Yang WZ, Guo DA (2014) Oplopanax elatus (Nakai) Nakai: chemistry, traditional use and pharmacology. Chin J Nat Med 12:721PubMedPubMedCentralGoogle Scholar
  95. 95.
    Appendino G, Bianchi F, Bader A, Campagnuolo C, Fattorusso E, Taglialatela-Scafati O, Blanco-Molina M, Macho A, Fiebich BL, Bremner P, Heinrich M, Ballero M, Muñoz E (2004) Coumarins from Opopanax chironium. New dihydrofuranocoumarins and differential induction of apoptosis by imperatorin and heraclenin. J Nat Prod 67:532PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    García-Argáez AN, Ramírez Apan TO, Parra Delgado H, Velázquez G, Martínez-Vázquez M (2000) Anti-inflammatory activity of coumarins from Decatropis bicolor on TPA ear mice model. Planta Med 66:279PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Abel G, Schimmer O (1986) Chromosome damaging effects of heraclenin in human lymphocytes in vitro. Mutat Res 169:51PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Wszelaki N, Paradowska K, Jamroz MK, Granica S, Kiss AK (2011) Bioactivity-guided fractionation for the butyryl-cholinesterase inhibitory activity of furanocoumarins from Angelica archangelica L. roots and fruits. J Agric Food Chem 59:9186PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Koziol E, Skalicka-Wozniak K (2016) Imperatorin pharmacocological meaning and analytical clues: profound investigation. Phytochem Rev 15:627PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Cai Y, Bennett D, Nair RV, Ceska O, Ashwood-Smith MJ, Di Giovanni J (1993) Inhibition and inactivation of murine hepatic ethoxy- and pentoxyresorufin-O-dealkylase by naturally occurring coumarins. Chem Res Toxicol 6:872PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Maenpaa J, Sigusch H, Raunio H, Syngelma T, Vuorela P, Vuorela H, Pelkonen O (1993) Differential inhibition of coumarin 7-hydroxylase activity in mouse and human liver microsomes. Biochem Pharmacol 45:1035PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Kleiner HE, Vulimiri SV, Miller L, Johnson WH Jr, Whitmann CP, Di Giovanni J (2001) Oral administration of naturally occurring coumarins leads to altered phase I and phase II enzyme activities and reduced DNA adducts formation by polycyclic aromatic hydrocarbons in various tissues of SENCAR mice. Carcinogenesis 22:73PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Kang AY, Young LR, Dingfelder C, Peterson S (2011) Effects of furanocoumarins from Apiaceous vegetables on the catalytic activity of recombinant human cytochrome P-450 1A2. Protein J 30:447PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zheng L, Cao J, Lu D, Ji L, Peng Y, Zheng J (2015) Imperatorin is a mechanism-based inactivator of CYP2B6. Drug Metab Dispos 43:82PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Kimura Y, Ito H, Ohnishi R, Hatano T (2006) Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food Chem Toxicol 48:429CrossRefGoogle Scholar
  106. 106.
    Prince M, Campbell CT, Robertson TA, Wells AJ, Kleiner HE (2006) Naturally occurring coumarins inhibit 7,12-dimethylbenz[a]anthracene DNA adduct formation in mouse mammary gland. Carcinogenesis 27:1204PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Luo KW, Sun JG, Wa Chan JY, Yang L, Wu SH, Fung KP, Liu FY (2011) Anticancer effects of imperatorin isolated from Angelica dahurica: induction of apoptosis in HepG2 cells through both death-receptor- and mitochondria-mediated pathways. Chemotherapy 57:449PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Badziul D, Jakubowicz-Gil J, Langner E, Rzeski W, Glowniak K, Gawron A (2014) The effect of quercetin and imperatorin on programmed cell death induction in T98G cells in vitro. Pharmacol Rep 66:292PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Li X, Zeng X, Sun J, Li H, Wu P, Fung KP, Liu F (2014) Imperatorin induces Mcl-1 degradation to cooperatively trigger Bax translocation and Bak activation to suppress drug-resistant human hepatoma. Cancer Lett 348:146PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Hu J, Xu C, Cheng B, Jin L, Li J, Gong Y, Lin W, Pan Z, Pan C (2016) Imperatorin acts as a cisplatin sensitizer via downregulating Mcl-1 expression in HCC chemotherapy. Tumor Biol 37:331CrossRefGoogle Scholar
  111. 111.
    Zheng YM, Lu AX, Shen JZ, Kwok AHY, Ho WS (2016) Imperatorin exhibits anticancer activities in human colon cancer cells via the caspase cascade. Oncol Rep 35:1995PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Choochuay K, Chunhacha P, Pongrakhananon V, Luechapudiporn R, Chanvorachote P (2012) Imperatorin sensitizes anoikis and inhibits anchorage independent growth of lung cancer cells. J Nat Med 67:599PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Mi C, Ma J, Wang KS, Zuo HX, Wang Z, Li MY, Piao LX, Xu GH, Li X, Quan ZS, Jin X (2017) Imperatorin suppresses proliferation and angiogenesis of human colon cancer cell by targeting HIF-1α via the mTOR/p70S6K/4E-BP1 and MAPK pathways. J Ethnopharmacol 203:27Google Scholar
  114. 114.
    Liao ZG, Tang T, Guan XJ, Dong W, Zhang J, Zhao GW, Yang M, Liang XL (2016) Improvement of transmembrane transport mechanism study of imperatorin on P-glycoprotein-mediated drug transport. Molecules 21:1606PubMedCentralCrossRefGoogle Scholar
  115. 115.
    Ban HS, Lim SS, Suzuki K, Jung SH, Lee S, Lee YS, Shin KH, Ohuchi K (2003) Inhibitory effects of furanocoumarins isolated from the roots of Angelica dahurica on prostaglandin E2 production. Planta Med 69:408PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Huang GJ, Deng JS, Liao JC, Hou WC, Wang SY, Sung PJ, Kuo YH (2011) Inducible nitric oxide synthase and cyclooxygenase-2 participate in anti-inflammatory activity of imperatorin from Glehnia littoralis. J Agric Food Chem 60:1673CrossRefGoogle Scholar
  117. 117.
    Zhang Y, Cao Y, Duan H, Wang H, He LC (2012) Imperatorin prevents cardiac hypertrophy and the transition to heart failure via NO-dependent mechanisms in mice. Fitoterapia 83:60PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Guo W, Sun J, Jiang L, Duan L, Huo M, Chen N, Zhong W, Wassy L, Yang Z, Feng H (2012) Imperatorin attenuates LPS-induced inflammation by suppressing NF-κB and MAPKs activation in RAW 264.7 macrophages. Inflammation 35:1764PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Zhang X, Li W, Abudureheman A, Cheng T, Peng P (2017) Imperatorin possesses notable anti-inflammatory activity in vitro and in vivo through inhibition of the NF-κB pathway. Mol Med Rep 16:8619PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Wang KS, Lv Y, Wang Z, Ma J, Mi C, Li X, Xu GH, Piao LX, Zheng SZ, Jin X (2017) Imperatorin efficiently blocks TNF-α-mediated activation of ROS/PI3K/Akt/NF-κB pathway. Oncol Rep 37:3397PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Marquez N, Sancho R, Ballero M, Bremmer P, Appendino G, Fiebich BL, Heinrich M, Munoz E (2004) Imperatorin inhibits T-cell proliferation by targeting the transcription factor NFAT. Planta Med 70:1016PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Oh HA, Kim HM, Jeong HJ (2011) Distinct effects of imperatorin on allergic rhinitis: imperatorin inhibits caspase-1 activity in vivo and in vitro. J Pharmacol Exp Ther 339:72PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Jeong KT, Lee E, Park NY, Kim SG, Park HH, Lee J, Lee YJ, Lee E (2016) Imperatorin suppresses degranulation and eicosanoid generation in activated bone marrow-derived mast cells. Biomol Ther 23:421CrossRefGoogle Scholar
  124. 124.
    Lin CL, Hsiao G, Wang CC, Lee YL (2016) Imperatorin exerts antiallergic effects in Th2-mediated allergic asthma via induction of IL-10-producing regulatory T cells by modulating the function of dendritic cells. Pharm Res 110:111CrossRefGoogle Scholar
  125. 125.
    Deng S, Chen SN, Yao P, Nikolic D, van Breemen RB, Bolton JL, Fong HHS, Farnsworth NR, Pauli GF (2006) Serotonergic activity-guided phytochemical investigation of the roots of Angelica sinensis. J Nat Prod 69:536PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Cao Y, Liu J, Wang Q, Liu M, Cheng Y, Zhang X, Lin T, Zhu Z (2017) Antidepressive-like effect of imperatorin from Angelica dahurica in prenatally stressed offspring rats through 5-hydroxytryptamine system. Neuroreport 28:426PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Wang SJ, Lin TY, Lu CW, Huang WJ (2008) Osthole and imperatorin, the active constituents of Cnidium monnieri (L.) Cusson, facilitate glutamate release from rat hippocampal nerve terminals. Neurochem Int 53:416PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Lin TY, Lu CW, Huang WJ, Wang SJ (2010) Osthole or imperatorin-mediated facilitation of glutamate release is associated with a synaptic vesicle mobilization in rat hippocampal glutamatergic nerve endings. Synapse 64:390PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Luszczki JJ, Wojda E, Andres-Mach M, Cisowski W, Glensk M, Glowniak K, Czuczwar SJ (2009) Anticonvulsant and acute neurotoxic effects of imperatorin, osthole and valproate in the maximal electroshock seizure and chimney tests in mice: a comparative study. Epilepsy Res 85:293PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Singhuber J, Baburin I, Ecker GF, Kopp B, Hering S (2011) Insights into structure–activity relationship of GABAA receptor modulating coumarins and furanocoumarins. Eur J Pharmacol 668:57PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Choi SY, Ahn EM, Song MC, Kim DW, Kang JH, Kwon OS, Kang TC, Baek NI (2005) In vitro GABA-transaminase inhibitory compounds from the root of Angelica dahurica. Phytother Res 19:839PubMedCrossRefGoogle Scholar
  132. 132.
    Wang C, Huo X, Tian X, Xu M, Dong P, Luan Z, Wang X, Zhang B, Zhang B, Huang S, Deng S, Ma X (2016) Inhibition of melatonin metabolism in humans induced by chemical components from herbs and effective prediction of this risk using a computational model. Br J Pharmacol 173:3261PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Tun T, Kang YS (2017) Imperatorin is transported through blood-brain barrier by carrier-mediated transporters. Biomol Ther 25:441CrossRefGoogle Scholar
  134. 134.
    Wang N, Wu L, Cao Y, Whang Y, Zhang Y (2013) The protective activity of imperatorin in cultured neural cells exposed to hypoxia re-oxygenation injury via anti-apoptosis. Fitoterapia 90:38PubMedCrossRefGoogle Scholar
  135. 135.
    Lee E, Choi SY, Yang JH, Lee YJ (2016) Preventive effects of imperatorin on perfluorohexanesulfonate-induced neuronal apoptosis via inhibition of intracellular calcium-mediated ERK pathway. Kor J Physiol Pharmacol 20:399CrossRefGoogle Scholar
  136. 136.
    Liao B, Chen R, Lin F, Mai A, Chen J, Li H, Dong S, Xu Z (2017) Imperatorin protects H9c2 cardiomyoblasts cells from hypoxia/reoxygenation-induced injury through activation of ERK signaling pathway. Saudi Pharm J 25:615PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Budzynska B, Boguszewska-Czubara A, Kruk-Slomka M, Skalicka-Wozniak K, Michalak A, Musik I, Biala G (2015) Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice. Psychopharmacology 232:931PubMedCrossRefGoogle Scholar
  138. 138.
    Granica S, Kiss AK, Jarończyk M, Maurin JK, Mazurek AP, Czarnocki Z (2009) Synthesis of imperatorin analogs and their evaluation as acetylcholinesterase and butyrylcholinesterase inhibitors. Arch Pharm 346:775CrossRefGoogle Scholar
  139. 139.
    Kim DK, Lim JP, Yang JH, Eom DO, Eun JS, Leem KH (2002) Acetylcholinesterase inhibitors from the roots of Angelica dahurica. Arch Pharm Res 25:856PubMedCrossRefGoogle Scholar
  140. 140.
    Zhang Y, Cao Y, Wang QL, Zheng L, Zhang J, He LC (2011) A potential calcium antagonist and its antihypertensive effects. Fitoterapia 82:988PubMedCrossRefGoogle Scholar
  141. 141.
    Wu KC, Chen YH, Cheng KS, Kuo YH, Yang CT, Wong KL, Tu YK, Chan P, Leung YM (2013) Suppression of voltage-gated Na+ channels and neuronal excitability by imperatorin. Eur J Pharmacol 721:49PubMedCrossRefGoogle Scholar
  142. 142.
    Wang YW, Yang CT, Chen YH, Gong CL, Chen YF, Kuo YH, Leung YM (2015) Inhibitory effects of imperatorin on voltage-gated K+ channels and ATP-sensitive K+ channels. Pharmacol Rep 67:134PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Chen X, Sun W, Gianaris NG, Riley AM, Cummins TR, Fehrenbacher JC, Obukhov AG (2014) Furanocoumarins are a novel class of modulators for the transient receptor potential vanilloid type 1 (TRPV1) channels. J Biol Chem 289:9600PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    He JY, Zhang W, He LC, Cao YX (2008) Imperatorin induces vasodilatation possibly inhibiting voltage dependent calcium channel and receptor mediated Ca+2 influx and release. Eur J Pharmacol 573:170CrossRefGoogle Scholar
  145. 145.
    Zhang Y, Wang QL, Zhan YZ, Duan HJ, Cao YJ, He LC (2010) Role of store-operated calcium in imperatorin-induced vasodilatation of rat small mesenteric artery. Eur J Pharmacol 647:126PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Mendel M, Skalicka-Wozniak K, Chlopecka M, Dziekan N (2015) Effect of imperatorin on the spontaneous motor activity of rat jejunum strips. Evid Based Compl Altern Med 2015: ID 614849Google Scholar
  147. 147.
    Nie H, Meng LZ, Zhou JY, Fan XF, Luo Y, Zhang GW (2009) Imperatorin is responsible for the vasodilatation of Angelica dahurica var. formosana regulated by nitric oxide in an endothelium-dependent manner. Chin J Integr Med 15:442PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Cao YJ, He X, Wang N, He LC (2013) Effects of imperatorin, the active component from Radix Angelicae (Baizhi), on the blood pressure and oxidative stress in 2K,1C hypertensive rats. Phytomedicine 20:1048PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Cao Y, Zhang Y, Wang N, He L (2014) Antioxidant effect of imperatorin from Angelica dahurica in hypertension via inhibiting NADPH oxidase activation and MAPK pathway. J Am Soc Hypertens 8:527PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Kaiser E, Kramar R, Farkouh E (1966) Imperatorin, a respiration inhibitor of succinate oxidation in liver mithocondria. Enzymologia 30:64PubMedPubMedCentralGoogle Scholar
  151. 151.
    Kramar R, Kaiser E (1968) Effect of imperatorin, a toxic principle from Ammi majus, on energy transfer in mitochrondia. Toxicon 6:145PubMedCrossRefGoogle Scholar
  152. 152.
    Hwang YL, Im M, Lee MH, Roh SS, Choi BW, Kim SJ, Sohn KC, Lee Y, Seo YJ, Lee JH, Kim CD (2016) Inhibitory effect of imperatorin on insulin-like growth factor-1-induced production in human sebocytes cultured in vitro. Life Sci 144:49PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Wang LY, Cheng KC, Li Y, Niu CS, Cheng JT, Niu HS (2017) The dietary furocoumarin imperatorin increases plasma GLP-1 levels in type 1-like diabetic rats. Nutrients 9:1192PubMedCentralCrossRefGoogle Scholar
  154. 154.
    Sancho R, Marquez N, Gomez-Gonzalo M, Calzado MA, Bettoni G, Coiras MT, Alcami J, Lopez-Cabrera M, Appendino G, Munoz E (2004) Imperatorin inhibits HIV-1 replication through an Sp-1 dependent pathway. J Biol Chem 279:37349PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Tang CH, Yang RS, Chien MY, Chen CC, Fu WM (2008) Enhancement of bone morphogenetic protein-2 expression and bone formation by coumarin derivatives via p38 and ERK-dependent pathway in osteoblasts. Eur J Pharmacol 579:40PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Tong K, Xin C, Chen W (2017) Isoimperatorin induces apoptosis of the SGC-7901 human gastric cancer cell line via the mitochondria-mediated pathway. Oncol Lett 13:518PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Hou YJ, Wang C, Wang T, Huang LM, Lin YY, He HZ (2017) Design, synthesis, and evaluation of new series of imperatorin analogs with potential vasodilatory activity. J Asian Nat Prod Res 30:1CrossRefGoogle Scholar
  158. 158.
    Curini M, Cravotto G, Epifano F, Giannone G (2006) Chemistry and biological activity of natural and synthetic prenyloxycoumarins. Curr Med Chem 2:199CrossRefGoogle Scholar
  159. 159.
    Cao J, Zheng L, Ji L, Lu D, Peng Y, Zheng J (2015) Mechanism-based inactivation of cytochrome P450 2B6 by isoimperatorin. Chem Biol Interact 226:23PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Pokharel YR, Han EH, Kim JY, Oh SJ, Kim SK, Woo ER, Jeong HG, Kang KW (2006) Potent protective effect of isoimperatorin against aflatoxin B1-inducible cytotoxicity in H4IIE cells: bifunctional effects on glutathione S-transferase and CYP1A. Carcinogenesis 27:2483PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Moon TC, Jin M, Son JK, Chang HW (2003) The effects of isoimperatorin isolated from Angelicae dahuricae on cyclooxygenase-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Arch Pharmacal Res 31:210CrossRefGoogle Scholar
  162. 162.
    Moon L, Ha YM, Jang HJ, Kim HS, Jun MS, Kim YM, Lee YS, Lee DH, Son KH, Kim HJ, Seo HG, Lee JH, Kim YS, Chang KC (2011) Isoimperatorin, cimiside E and 23-O-acetylshengmanol-3-xyloside from Cimicifugae rhizome inhibit TNF-α-induced VCAM-1 expression in human endothelial cells: involvement of PPAR-γ upregulation and PI3K, ERK1/2, and PKC signal pathways. J Ethnopharmacol 133:336PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Okuyama T, Takata M, Nishino H, Nishino A, Takayasu J, Iwashima A (1990) Studies on the anti-tumor-promoting activity of naturally occurring substances II. Inhibition of tumor-promoter enhanced phospholipid metabolism by umbelliferous material. Chem Pharm Bull 38:1084PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Murakami A, Gao G, Kim OK, Omura M, Yano M, Ito C, Furukawa H, Jiwajinda S, Koshimizu K, Ohigashi H (1999) Identification of coumarins from the fruit of Citrus hystrix DC. as inhibitors of nitric oxide generation in mouse macrophage RAW 264.7 cells. J Agric Food Chem 47:333PubMedCrossRefGoogle Scholar
  165. 165.
    Choi JS, Shin HY, Kwon KS, Shin S, Choung SY, Kwon YS, Lee JW, Choi BH, Lee CK (2011) Effects of oxypeucedanin on global gene expression and MAPK signaling pathway in mouse neuroblastoma neuro-2A cells. Planta Med 77:1512PubMedCrossRefGoogle Scholar
  166. 166.
    Eun JS, Park JA, Choi BH, Cho SK, Kim DK, Kwak YG (2005) Effects of oxypeucedanin on hKv1.5 and action potential duration. Biol Pharm Bull 28:657PubMedCrossRefGoogle Scholar
  167. 167.
    Nizamutdinova IT, Jeong JJ, Xu GH, Lee SH, Kang SS, Kim YS, Chang KC, Kim HJ (2008) Hesperidin, hesperidin methyl chalone and phellopterin from Poncirus trifoliata (Rutaceae) differentially regulate the expression of adhesion molecules in tumor necrosis factor-α-stimulated human umbilical vein endothelial cells. Int Immunopharmacol 8:670PubMedCrossRefGoogle Scholar
  168. 168.
    Azietaku JT, Ma H, Yu XA, Li J, Oppong MB, Cao J, An M, Chang YX (2017) A review of the ethnopharmacology, phytochemistry and pharmacology of Notopterygium incisum. J Ethnopharmacol 18:202Google Scholar
  169. 169.
    Zhao AH, Yang XB, Yang XW, Zhang YB, Xu W, Liu JX (2012) Biotransformation products of phellopterin by rat liver microsomes and the inhibition on NO production in LPS-activated RAW264.7 cells. J Asian Nat Prod Res 14:956PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Deng GG, Wei W, Yang XW, Zhang YB, Xu W, Gong NB, Lu Y, Wang FF (2015) New coumarins from the roots of Angelica dahurica var. formosana cv. Chuanbaizhi and their inhibition on NO production in LPS-activated RAW264.7 cells. Fitoterapia 101:194PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Dekermendijian K, Ai J, Nielsen M, Sterner O, Shan R, Witt MR (1996) Characterisaztion of the furanocoumarin phellopterin as a rat brain benzodiazepine receptor partial agonist in vitro. Neurosci Lett 219:151CrossRefGoogle Scholar
  172. 172.
    Bergendorff O, Dekermendijian K, Nielsen M, Shan R, Witt MR, Ai J, Sterner O (1997) Furanocoumarins with affinity to brain benzodiazepine receptors in vitro. Phytochemistry 44:1121PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Shahverdi AR, Saadat F, Khorramizadeh MR, Iranshahi M, Khoshayand MR (2006) Two matrix metalloproteinases inhibitors from Ferula persica var. persica. Phytomedicine 13:712PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Shakeri A, Iranshahy M, Iranshahi M (2014) Biological properties and molecular targets of umbelliprenin—a mini-review. J Asian Nat Prod Res 16:884PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Barthomeuf C, Lim S, Iranshahi M, Chollet P (2008) Umbelliprenin from Ferula szowitsiana inhibits the growth of human M4Beu metastatic pigmented malignant melanoma cells through cell-cycle arrest in G1 and induction of caspase-dependent apoptosis. Phytomedicine 15:103PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Khaghanzadeh N, Samiei A, Ramezani M, Mojtahedi Z, Hosseinzadeh M, Ghaderi A (2014) Umbelliprenin induced production of IFN-γ and TNF-α, and reduced IL-10, IL-4, Foxp3 and TGF-β in a mouse model of lung cancer. Immunopharmacol Immunotoxicol 36:25PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Khaghanzadeh N, Nakamura K, Kuramitsu Y, Ghaderi A, Mojtahedi Z (2016) Immune-associated proteins with potential in vivo anti-tumor activities are upregulated in lung cancer cells treated with umbelliprenin: a proteomic approach. Oncol Lett 12:5295PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Kasaian J, Mosaffa F, Behravan J, Masullo M, Piacente S, Ghandadi M, Iranshahi M (2015) Reversal of P-glycoprotein-mediated multidrug resistance in MCF-7/Adr cancer cells by sesquiterpene coumarins. Fitoterapia 103:149PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Gholami O (2017) Umbelliprenin mediates its apoptotic effect by hormesis: a commentary. Dose-Response 2017:1Google Scholar
  180. 180.
    Fiorito S, Epifano F, Preziuso F, Cacciatore I, Di Stefano A, Taddeo VA, de Medina P, Genovese S (2018) Natural oxyprenylated coumarins are modulators of melanogenesis. Eur J Med Chem 152:274PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Curini M, Genovese S, Menghini L, Marcotullio MC, Epifano F (2008) Phytochemistry and pharmacology of Boronia pinnata Sm. Nat Prod Commun 3:2145Google Scholar
  182. 182.
    Curini M, Epifano F, Genovese S, Menghini L, Ricci D, Fraternale D, Giamperi L, Bucchini A, Bellacchio E (2006) Lipoxygenase inhibitory activity of boropinic acid, active principle of Boronia pinnata. Nat Prod Commun 1:1141Google Scholar
  183. 183.
    Epifano F, Sosa S, Tubaro A, Marcotullio MC, Curini M, Genovese S (2011) Topical anti-inflammatory activity of boropinic acid and its natural and semi-synthetic derivatives. Bioorg Med Chem Lett 21:769PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Epifano F, Menghini L, Pagiotti R, Angelini P, Genovese S, Curini M (2006) In vitro inhibitory activity of boropinic acid against Helicobacter pylori. Bioorg Med Chem Lett 16:5523PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Touati E, Michel V, Correia M, Menghini L, Genovese S, Curini M, Epifano F (2009) Boropinic acid, a novel inhibitor of Helicobacter pylori stomach colonization. J Antimicrob Chemother:210Google Scholar
  186. 186.
    Genovese S, Epifano F (2013) Recent developments in the pharmacological properties of 4′-geranyloxyferulic acid, a colon cancer chemopreventive agent of natural origin. Curr Drug Targets 13:1083CrossRefGoogle Scholar
  187. 187.
    Curini M, Epifano F, Genovese S, Marcotullio MC, Menghini L (2006) 3-(4′-Geranyloxy-3′-methoxyphenyl)-2-trans propenoic acid: a novel promising cancer chemopreventive agent. Anticancer Agents Med Chem 6:571PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Genovese S, Curini M, Gresele P, Corazzi T, Epifano F (2011) Inhibition of COX-1 activity and COX-2 expression by 3-(4′-geranyloxy-3′-methoxyphenyl)-2-trans-propenoic acid and its semi-synthetic derivatives. Bioorg Med Chem Lett 21:5995PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Genovese S, Epifano F, Fiorito S, Curini M, Marrelli M, Menichini F, Conforti F (2013) Conjugation of l-NAME to prenyloxycinnamic acids improves its inhibitory effects on nitric oxide production. Bioorg Med Chem Lett 23:2933PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Epifano F, Curini M, Genovese S, Blaskovich M, Hamilton A, Sebti SM (2007) Prenyloxyphenylpropanoids as novel lead compounds for the selective inhibition of geranylgeranyl transferase I. Bioorg Med Chem Lett 17:2639PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Genovese S, Foreman JE, Borland MG (2010) A natural propenoic acid derivative activates peroxisome proliferator-activated receptor-β/δ (PPAR β/δ). Life Sci 86:493PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Genovese S, Epifano F, Curini M, Menger D, Zembruski NCL, Weiss J (2011) In vitro effects of natural prenyloxycinnamic acids on human cytochrome P450 isozyme activity and expression. Phytomedicine 18:586PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Miyamoto S, Epifano F, Curini M, Genovese S, Kimi M, Ishigamori-Suzuki R, Yasui Y, Sugie S, Tanaka T (2008) A novel prodrug of 4′-geranyloxyferulic acid suppresses colitis-related colon carcinogenesis in mice. Nutr Cancer 60:675Google Scholar
  194. 194.
    Tanaka T, de Azevedo MB, Durán N, Alderete JB, Epifano F, Genovese S, Tanaka M, Tanaka T, Curini M (2010) Colorectal cancer chemoprevention by 2β-cyclodextrin inclusion compounds of auraptene and 4′-geranyloxyferulic acid. Int J Cancer 126:830PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Shimizu M, Kochi T, Shirakami Y, Genovese S, Epifano F, Fiorito S, Mori T, Tanaka T, Moriwaki H (2014) A newly synthesized compound, 4′-geranyloxyferulic acid–N(ω)-nitro-l-arginine methyl ester suppresses inflammation associated colorectal carcinogenesis in male mice. Int J Cancer 135:774Google Scholar
  196. 196.
    Ito C, Itoigawa M, Otsuka T, Tokuda H, Nishino H, Furukawa H (2000) Constituents of Boronia pinnata. J Nat Prod 63:1344PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Hill K, Fiorito S, Taddeo VA, Schulze A, Leonhardt M, Epifano F, Genovese S (2016) Plumbagin, juglone, and boropinal as novel TRPA1 agonists. J Nat Prod 79:697PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Epifano F, Genovese S, Fiorito S, Magne Nde C, Clyne C (2014) Nelumal A, the active principle of Ligularia nelumbifolia, is a novel aromatase inhibitor. Nat Prod Commun 9:823PubMedPubMedCentralGoogle Scholar
  199. 199.
    Jo YS, Huong DT, Bae K, Lee MK, Kim YH (2002) Monoamine oxidase inhibitory coumarin from Zanthoxylum schinifolium. Planta Med 68:84PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Marquis A, Epifano F, Genovese S, Grenier D (2014) The plant coumarins auraptene and lacinartin as potential multifunctional therapeutic agents for treating periodontal disease. BMC Compl Altern Med 12:80Google Scholar
  201. 201.
    Chen IS, Lin YC, Tsai IL, Teng CM, Ko FN, Ishikawa T, Ishii H (1995) Coumarins and anti-platelet aggregation constituents from Zanthoxylum schinifolium. Phytochemistry 39:1091PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Tsai IL, Lin WY, Teng CM, Ishikawa T, Doong SL, Huang MW, Chen YC, Chen IS (2000) Coumarins and antiplatelet constituents from the root bark of Zanthoxylum schinifolium. Planta Med 66:618PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Santos J, Marquis A, Epifano F, Genovese S, Curini M, Grenier D (2013) Collinin reduces Porphyromonas gingivalis growth and collagenase activity and inhibits the lipopolysaccharide-induced macrophage inflammatory response and osteoclast differentiation and function. J Periodont 84:704PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Kohno H, Suzuki R, Curini M, Epifano F, Maltese F, Prieto Gonzales S, Tanaka T (2006) Dietary administration with prenyloxycoumarins, auraptene and collinin, inhibits colitis-related colon carcinogenesis in mice. Int J Cancer 118:2936PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Nguyen PH, Zhao BT, Kim O, Lee JH, Choi JS, Min BS, Woo MH (2016) Anti-inflammatory terpenylated coumarins from the leaves of Zanthoxylum schinifolium with α-glucosidase inhibitory activity. J Nat Med 70:276PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Gargaro M, Epifano F, Fiorito S, Taddeo VA, Genovese S, Turco A, Puccetti P, Schmidt-Weber CB, Fallarino F (2017) Interaction of 7-alkoxycoumarins with the aryl hydrocarbon receptor. J Nat Prod 80:1939PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Epifano F, Molinaro G, Genovese S, Teke Ngomba R, Nicoletti F, Curini M (2008) Neuroprotective effect of prenyloxycoumarins from edible vegetables. Neurosci Lett 443:57PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Feldman M, Tanabe SI, Epifano F, Genovese S, Curini M, Grenier D (2011) Antibacterial and anti-inflammatory activities of 4-hydroxycordoin: potential benefits for periodontal disease. J Nat Prod 74:26PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Randriaminahy M, Proksch P, Witte L (1992) Lipophilic phenolic constituents from Helychrisum species endemic to Madagscar. Nat C J Biosci 47:10Google Scholar
  210. 210.
    Bohlmann F, Zdero C (1982) Naturally occurring terpene derivatives. Part 408. Chemotaxonomy of the genus Pleiotaxis. Phytochemistry 21:1434CrossRefGoogle Scholar
  211. 211.
    Zdero C, Bohlmann F (1990) Glycerol derivatives and other constituents from Metalasia species. Phytochemistry 29:2179CrossRefGoogle Scholar
  212. 212.
    Bonifait L, Zhao L, Azelmat J, Genovese S, Epifano F, Grenier D (2014) Synthesis and biological activities of 2,6-dihydroxy-4-isopentenyloxychalcone as an antimicrobial and anti-inflammatory compound. Med Chem 3:300CrossRefGoogle Scholar
  213. 213.
    Locatelli M, Genovese S, Carlucci G, Kremer D, Randic M, Epifano F (2012) Development and application of high-performance liquid chromatography for the study of two new oxyprenylated anthraquinones produced by Rhamnus species. J Chromatogr A 1225:113PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Bruyere C, Genovese S, Lallemand B, Ionescu-Motatu A, Curini M, Kiss R, Epifano F (2011) Growth inhibitory activities of oxyprenylated and non-prenylated naturally occurring phenylpropanoids in cancer cell lines. Bioorg Med Chem Lett 21:4173CrossRefGoogle Scholar
  215. 215.
    Abu-Mustafa EA, El-Bay FKA, El-Khrisy EAM, Fayez MBE (1973) Natural coumarins. Part XIV. Synthesis of some isoprenyl ethers of psoralene hydroquinone and related products. J Heterocycl Chem 10:443CrossRefGoogle Scholar
  216. 216.
    Fiorito S, Epifano F, Palmisano R, Genovese S, Taddeo VA (2017) A re-investigation of the phytochemical composition of the edible herb Amaranthus retroflexus L. J Pharm Biomed Anal 143:183PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Taddeo VA, Genovese S, de Medina P, Palmisano R, Epifano F, Fiorito S (2017) Quantification of biologically active O-prenylated and unprenylated phenylpropanoids in dill (Anethum graveolens), anise (Pimpinella anisum), and wild celery (Angelica archangelica). J Pharm Biomed Anal 134:319PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Taddeo VA, Epifano F, Fiorito S, Genovese S (2017) Comparison of different extraction methods and HPLC quantification of prenylated and unprenylated phenylpropanoids in raw Italian propolis. J Pharm Biomed Anal 129:219CrossRefGoogle Scholar
  219. 219.
    Fiorito S, Epifano F, de Medina P, Taddeo VA, Genovese S (2016) Two novel cinnamic acid derivatives in honey and propolis. J Apicult Res 55:228CrossRefGoogle Scholar
  220. 220.
    Alhassain AM, Abdullahi MI, Uba A, Umar A (2014) Prenylation of aromatic secondary metabolites: a new frontier for the development of novel drugs. Trop J Pharm Res (2):307Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Serena Fiorito
    • 1
  • Francesco Epifano
    • 1
    Email author
  • Francesca Preziuso
    • 1
  • Vito Alessandro Taddeo
    • 1
  • Salvatore Genovese
    • 1
  1. 1.Department of PharmacyUniversity “G. d’Annunzio” of Chieti-PescaraChieti ScaloItaly

Personalised recommendations