The Contribution of Allocentric Impairments to the Cognitive Decline in Alzheimer’s Disease

  • Silvia SerinoEmail author
  • Francesca Morganti
  • Desirèe Colombo
  • Giuseppe Riva
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 253)


An early decline in navigation abilities is one of the first sign of Alzheimer’s Disease (AD). More specifically, it has been suggested that allocentric impairments contribute significantly to this pathological decline. In this vein, the objective of the current work was to investigate the contribution of different spatial abilities involved in navigation (including allocentric ones) to the cognitive decline. Thirty elderly participated in the study, divided into two groups: Fifteen cognitively healthy aged individuals and fifteen individuals with AD. Our results showed that patients with AD performed significantly poorer in almost all tests evaluating spatial abilities in comparison to cognitively healthy aged individuals. Interestingly, we found that the allocentric abilities were the only significant predictor of the cognitive decline. Overall, these results suggested the primary role of allocentric impairments in contributing to the cognitive pathological decline.


Allocentric abilities Spatial navigation Virtual Reality Alzheimer’s Disease 



This work was partially supported by the Italian funded project “High-end and Low-End Virtual Reality Systems for the Rehabilitation of Frailty in the Elderly” (PE-2013-02355948), by the research project Tecnologia Positiva e Healthy Aging (Positive Technology and Healthy Aging) (Grant D.3.2., 2014) and by the research project “Ageing and Healthy Living: A Human Centered Approach in Research and innovation as Source of Quality Life”, funded by Fondazione Cariplo within the 2014.


  1. 1.
    Wolbers, T., Hegarty, M.: What determines our navigational abilities? Trends Cogn. Sci. 14(3), 138–146 (2010)CrossRefGoogle Scholar
  2. 2.
    Gallistel, C.R.: The Organization of Learning. MIT Press, Cambridge (1990)Google Scholar
  3. 3.
    Allison, S.L., et al.: Spatial navigation in preclinical Alzheimer’s disease. J. Alzheimer’s DISEASE 1–14 (2016, preprint)Google Scholar
  4. 4.
    Lithfous, S., Dufour, A., Després, O.: Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: insights from imaging and behavioral studies. Ageing Res. Rev. 12(1), 201–213 (2013)CrossRefGoogle Scholar
  5. 5.
    Gazova, I., et al.: Spatial navigation—a unique window into physiological and pathological aging. Front. Aging Neurosci. 4, 16 (2012)CrossRefGoogle Scholar
  6. 6.
    Serino, S., et al.: The role of egocentric and allocentric abilities in Alzheimer’s disease: a systematic review. Ageing Res. Rev. 16, 32–44 (2014)CrossRefGoogle Scholar
  7. 7.
    Boccia, M., et al.: Neural underpinnings of the decline of topographical memory in mild cognitive impairment. Am. J. Alzheimer’s Disease Other Dementias (2016). Scholar
  8. 8.
    Weniger, G., et al.: Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment. Neuropsychologia 49(3), 518–527 (2011)CrossRefGoogle Scholar
  9. 9.
    Petersen, R.C.: Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256(3), 183–194 (2004)CrossRefGoogle Scholar
  10. 10.
    Laczó, J., et al.: Exploring the contribution of spatial navigation to cognitive functioning in older adults. Neurobiol. Aging 51, 67–70 (2017)CrossRefGoogle Scholar
  11. 11.
    Braak, H., Braak, E.: Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82(4), 239–259 (1991)CrossRefGoogle Scholar
  12. 12.
    Braak, H., Braak, E.: Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol. Scand. 94(S165), 3–12 (1996)CrossRefGoogle Scholar
  13. 13.
    Alafuzoff, I., et al.: Staging of neurofibrillary pathology in Alzheimer’s disease: a study of the BrainNet Europe Consortium. Brain Pathol. 18(4), 484–496 (2008)Google Scholar
  14. 14.
    Dickson, D.W.: The pathogenesis of senile plaques. J. Neuropathol. Exp. Neurol. 56(4), 321–339 (1997)CrossRefGoogle Scholar
  15. 15.
    Thal, D.R., et al.: Sequence of Aβ-protein deposition in the human medial temporal lobe. J. Neuropathol. Exp. Neurol. 59(8), 733–748 (2000)CrossRefGoogle Scholar
  16. 16.
    Serino, S., Riva, G.: Getting lost in Alzheimer’s disease: a break in the mental frame syncing. Med. Hypotheses 80(4), 416–421 (2013)CrossRefGoogle Scholar
  17. 17.
    Serino, S., Riva, G.: What is the role of spatial processing in the decline of episodic memory in Alzheimer’s disease? The “mental frame syncing” hypothesis. Front. Aging Neurosci. 6, 33 (2014)CrossRefGoogle Scholar
  18. 18.
    Wolbers, T., Dudchenko, P.A., Wood, E.R.: Spatial memory - a unique window into healthy and pathological aging. Front. Aging Neurosci. 6, 35 (2014)CrossRefGoogle Scholar
  19. 19.
    Iachini, I., et al.: Visuospatial memory in healthy elderly, AD and MCI: a review. Curr. Aging Sci. 2(1), 43–59 (2009)CrossRefGoogle Scholar
  20. 20.
    Nemmi, F., Boccia, M., Guariglia, C.: Does aging affect the formation of new topographical memories? Evidence from an extensive spatial training. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 24(1), 29–44 (2017)CrossRefGoogle Scholar
  21. 21.
    Moffat, S.D.: Aging and spatial navigation: what do we know and where do we go? Neuropsychol. Rev. 19(4), 478–489 (2009)CrossRefGoogle Scholar
  22. 22.
    Gazova, I., et al.: Spatial navigation in young versus older adults. Front. Aging Neurosci. 5, 94 (2013)CrossRefGoogle Scholar
  23. 23.
    Ruggiero, G., D’Errico, O., Iachini, T.: Development of egocentric and allocentric spatial representations from childhood to elderly age. Psychol. Res. 80(2), 259–272 (2016)CrossRefGoogle Scholar
  24. 24.
    Montefinese, M., et al.: Age-related effects on spatial memory across viewpoint changes relative to different reference frames. Psychol. Res. 79(4), 687–697 (2015)CrossRefGoogle Scholar
  25. 25.
    Wiener, J.M., Kmecova, H., de Condappa, O.: Route repetition and route retracing: effects of cognitive aging. Spatial memory – a unique window into healthy and pathological ageing (2015)Google Scholar
  26. 26.
    McKhann, G., et al.: Clinical diagnosis of Alzheimer’s disease report of the NINCDS‐ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34(7), 939 (1984)CrossRefGoogle Scholar
  27. 27.
    Brazzelli, M., et al.: A neuropsychological instrument adding to the description of patients with suspected cortical dementia: the Milan overall dementia assessment. J. Neurol. Neurosurg. Psychiatr. 57(12), 1510–1517 (1994)CrossRefGoogle Scholar
  28. 28.
    Folstein, M.F., Robins, L.N., Helzer, J.E.: The mini-mental state examination. Arch. Gener. Psychiatr. 40(7), 812 (1983)CrossRefGoogle Scholar
  29. 29.
    Corsi, P.M.: Human memory and the medial temporal region of the brain. ProQuest Information & Learning (1973)Google Scholar
  30. 30.
    Spinnler, H., Tognoni, G.: Standardizzazione e taratura italiana di test neuropsicologici. Ital. J. Neurol. Sci. 6(8), 1–119 (1987)Google Scholar
  31. 31.
    Benton, A.L., Varney, N.R., des Hamsher, K.: Visuospatial judgment: a clinical test. Arch. Neurol. 35(6), 364–367 (1978)CrossRefGoogle Scholar
  32. 32.
    Money, J., Alexander, D., Walker, H.T.: A standardized road-map test of direction sense: Manual. Johns Hopkins Press (1965)Google Scholar
  33. 33.
    Ratcliff, G.: Spatial thought, mental rotation and the right cerebral hemisphere. Neuropsychologia 17(1), 49–54 (1979)CrossRefGoogle Scholar
  34. 34.
    Serino, S., et al.: Assessing the mental frame syncing in the elderly: a virtual reality protocol. Stud. Health Technol. Inform. 199, 153–157 (2014)Google Scholar
  35. 35.
    Serino, S., et al.: Detecting early egocentric and allocentric impairments deficits in Alzheimer’s disease: an experimental study with virtual reality. Front. Aging Neurosci. 7, 88 (2015)CrossRefGoogle Scholar
  36. 36.
    Pietro, C., Silvia, S., Federica, P., Andrea, G., Giuseppe, R.: NeuroVirtual 3D: a multiplatform 3D simulation system for application in psychology and neuro-rehabilitation. In: Ma, M., Jain, L., Anderson, P. (eds.) Virtual Augmented Reality and Serious Games for Healthcare 1, pp. 275–286. Springer, Heidelberg (2014). Scholar
  37. 37.
    Colombo, D., et al.: Egocentric and allocentric spatial reference frames in aging: a systematic review. Neurosci. Biobehav. Rev. 80, 605–621 (2017)CrossRefGoogle Scholar
  38. 38.
    Rainville, C., Marchand, N., Passini, R.: Performances of patients with a dementia of the Alzheimer type in the standardized road-map test of direction sense. Neuropsychologia 40(5), 567–573 (2002)CrossRefGoogle Scholar
  39. 39.
    Marková, H., et al.: Perspective taking abilities in amnestic mild cognitive impairment and Alzheimer’s disease. Behav. Brain Res. 281, 229–238 (2015)CrossRefGoogle Scholar
  40. 40.
    Pai, M.C., Yang, Y.C.: Impaired translation of spatial representation in young onset Alzheimer’s disease patients. Curr. Alzheimer Res. 10(1), 95–103 (2013)Google Scholar
  41. 41.
    Hegarty, M., Waller, D.: A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence 32(2), 175–191 (2004)CrossRefGoogle Scholar
  42. 42.
    Hort, J., et al.: Spatial navigation deficit in amnestic mild cognitive impairment. Proc. Natl. Acad. Sci. USA 104(10), 4042–4047 (2007)CrossRefGoogle Scholar
  43. 43.
    Laczo, J., et al.: From Morris Water Maze to computer tests in the prediction of Alzheimer’s disease. Neurodegener. Dis. 10(1–4), 153–157 (2012)CrossRefGoogle Scholar
  44. 44.
    Laczo, J., et al.: Human analogue of the morris water maze for testing subjects at risk of Alzheimer’s disease. Neurodegener. Dis. 7(1–3), 148–152 (2010)CrossRefGoogle Scholar
  45. 45.
    Laczo, J., et al.: Spatial navigation testing discriminates two types of amnestic mild cognitive impairment. Behav. Brain Res. 202(2), 252–259 (2009)CrossRefGoogle Scholar
  46. 46.
    Bellassen, V., et al.: Temporal order memory assessed during spatiotemporal navigation as a behavioral cognitive marker for differential Alzheimer’s disease diagnosis. J. Neurosci. 32(6), 1942–1952 (2012)CrossRefGoogle Scholar
  47. 47.
    Morganti, F., Stefanini, S., Riva, G.: From allo-to egocentric spatial ability in early Alzheimer’s disease: a study with virtual reality spatial tasks. Cogn. Neurosci. 4(3–4), 171–180 (2013)CrossRefGoogle Scholar
  48. 48.
    Byrne, P., Becker, S., Burgess, N.: Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114(2), 340 (2007)CrossRefGoogle Scholar
  49. 49.
    Burgess, N.: Spatial memory: how egocentric and allocentric combine. Trends Cogn. Sci. 10(12), 551–557 (2006)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Silvia Serino
    • 1
    • 2
    Email author
  • Francesca Morganti
    • 3
  • Desirèe Colombo
    • 4
  • Giuseppe Riva
    • 1
    • 2
  1. 1.Applied Technology for Neuro-Psychology LabIRCCS Istituto Auxologico ItalianoMilanItaly
  2. 2.Department of PsychologyUniversità Cattolica del Sacro CuoreMilanItaly
  3. 3.Department of Human and Social SciencesUniversity of BergamoBergamoItaly
  4. 4.Department of Basic PsychologyClinic and Psychobiology, Universitat Jaume ICastellónSpain

Personalised recommendations