Advertisement

A Fragment of Linear Temporal Logic for Universal Very Weak Automata

  • Keerthi AdabalaEmail author
  • Rüdiger Ehlers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11138)

Abstract

Many temporal specifications used in practical model checking can be represented as universal very weak automata (UVW). They are structurally simple and their states can be labeled by simple temporal logic formulas that they represent. For complex temporal properties, it can be hard to understand why a trace violates a property, so when employing UVWs in model checking, this information helps with interpreting the trace. At the same time, the simple structure of UVWs helps the model checker with finding short traces.

While a translation from computation tree logic (CTL) with only universal path quantifiers to UVWs has been described in earlier work, complex temporal properties that define sequences of allowed events along computations of a system are easier to describe in linear temporal logic (LTL). However, no direct translation from LTL to UVWs with little blow-up is known.

In this paper, we define a fragment of LTL that gives rise to a simple and efficient translation from it to UVW. The logic contains the most common shapes of safety and liveness properties, including all nestings of “Until”-subformulas. We give a translation from this fragment to UVWs that only has an exponential blow-up in the worst case, which we show to be unavoidable. We demonstrate that the simple shape of UVWs helps with understanding counter-examples in a case study.

References

  1. 1.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE FOCS, pp. 46–57 (1977)Google Scholar
  2. 2.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  3. 3.
    Blahoudek, F., Duret-Lutz, A., Kretínský, M., Strejcek, J.: Is there a best Büchi automaton for explicit model checking? In: SPIN Symposium, pp. 68–76 (2014)Google Scholar
  4. 4.
    Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counterexamples using causality. Form. Methods Syst. Des. 40(1), 20–40 (2012)CrossRefGoogle Scholar
  5. 5.
    Basin, D., Bhatt, B.N., Traytel, D.: Optimal proofs for linear temporal logic on lasso words. In: 16th International Symposium on Automated Technology for Verification and Analysis (ATVA 2018) (2018)Google Scholar
  6. 6.
    Maidl, M.: The common fragment of CTL and LTL. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS), pp. 643–652 (2000)Google Scholar
  7. 7.
    Ehlers, R.: ACTL \(\cap \) LTL synthesis. In: Madhusudan, P., Seshia, Sanjit A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 39–54. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31424-7_9CrossRefGoogle Scholar
  8. 8.
    Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual. Addison-Wesley, Menlo Park (2004)Google Scholar
  9. 9.
    Cichon, J., Czubak, A., Jasinski, A.: Minimal Büchi automata for certain classes of LTL formulas. In: Fourth International Conference on Dependability of Computer Systems, (DepCos-RELCOMEX), pp. 17–24 (2009)Google Scholar
  10. 10.
    Gurumurthy, S., Bloem, R., Somenzi, F.: Fair simulation minimization. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 610–623. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45657-0_51CrossRefGoogle Scholar
  11. 11.
    Vardi, M.Y.: Nontraditional applications of automata theory. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 575–597. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-57887-0_116CrossRefGoogle Scholar
  12. 12.
    Gerth, R., Peled, D.A., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Protocol Specification, Testing and Verification XV, pp. 3–18 (1995)CrossRefGoogle Scholar
  13. 13.
    Ehlers, R.: Short witnesses and accepting lassos in \(\omega \)-automata. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 261–272. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13089-2_22CrossRefGoogle Scholar
  14. 14.
    Bojańczyk, M.: The common fragment of ACTL and LTL. In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 172–185. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78499-9_13CrossRefzbMATHGoogle Scholar
  15. 15.
    Duret-Lutz, A.: LTL translation improvements in Spot 1.0. Int. J. Crit. Comput. Based Syst. 5(1/2), 31–54 (2014)CrossRefGoogle Scholar
  16. 16.
    Kamel, M., Leue, S.: Validation of a remote object invocation and object migration in CORBA GIOP using Promela/Spin. In: International SPIN Workshop (1998)Google Scholar
  17. 17.
    Filiot, E., Jin, N., Raskin, J.: Antichains and compositional algorithms for LTL synthesis. Form. Methods Syst. Des. 39(3), 261–296 (2011)CrossRefGoogle Scholar
  18. 18.
    Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of BremenBremenGermany

Personalised recommendations