Advertisement

Efficient Symbolic Representation of Convex Polyhedra in High-Dimensional Spaces

  • Bernard Boigelot
  • Isabelle MainzEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11138)

Abstract

This work is aimed at developing an efficient data structure for representing symbolically convex polyhedra. We introduce an original data structure, the Decomposed Convex Polyhedron (DCP), that is closed under intersection and linear transformations, and allows to check inclusion, equality, and emptiness. The main feature of DCPs lies in their ability to represent concisely polyhedra that can be expressed as combinations of simpler sets, which can overcome combinatorial explosion in high dimensional spaces. DCPs also have the advantage of being reducible into a canonical form, which makes them efficient for representing simple sets constructed by long sequences of manipulations, such as those handled by state-space exploration tools. Their practical efficiency has been evaluated with the help of a prototype implementation, with promising results.

Notes

Acknowledgment

The authors wish to thank Pascal Fontaine and Laurent Poirrier for their precious help in obtaining relevant benchmarks.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Avis, D.: A revised implementation of the reverse search vertex enumeration algorithm. Polytopes – Combinatorics and Computation, pp. 177–198. Birkhäuser, Basel (2000)Google Scholar
  3. 3.
    Bachem, A., Grötschel, M.: Characterizations of adjacency of faces of polyhedra. Mathematical Programming at Oberwolfach, pp. 1–22. Springer, Berlin (1981)Google Scholar
  4. 4.
    Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bagnara, R., Hill, P.M., Zaffanella, E.: Applications of polyhedral computations to the analysis and verification of hardware and software systems. Theor. Comput. Sci. 410(46), 4672–4691 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Proceedings of the SMT’10 (2010)Google Scholar
  7. 7.
    Boigelot, B., Herbreteau, F., Mainz, I.: Acceleration of affine hybrid transformations. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 31–46. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11936-6_4CrossRefGoogle Scholar
  8. 8.
    Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear arithmetic over the integers and reals. ACM Trans. Comput. Log. 6(3), 614–633 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bournez, O., Maler, O., Pnueli, A.: Orthogonal polyhedra: Representation and computation. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC’1999. LNCS, vol. 1569, pp. 46–60. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48983-5_8CrossRefGoogle Scholar
  10. 10.
    Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open, trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 151–156. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02959-2_12CrossRefGoogle Scholar
  11. 11.
    Chernikova, N.: Algorithm for finding a general formula for the non-negative solutions of a system of linear inequalities. USSR Comput. Math. Math. Phys. 5(2), 228–233 (1965)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the POPL’77. pp. 238–252. ACM Press (1977)Google Scholar
  13. 13.
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Proceedings of the POPL’78. pp. 84–96. ACM (1978)Google Scholar
  14. 14.
    Degbomont, J.F.: Implicit Real-Vector Automata. Ph.D. thesis, Université de Liège (2013)Google Scholar
  15. 15.
    Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. Int. J. Softw. Tools Technol. Transf. 10(3), 263–279 (2008)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Singh, G., Püschel, M., Vechev, M.: Fast polyhedra abstract domain. In: Proceedings of the POPL’17, pp. 46–59. ACM (2017)Google Scholar
  18. 18.
    Halbwachs, N., Proy, Y.-E., Raymond, P.: Verification of linear hybrid systems by means of convex approximations. In: Le Charlier, B. (ed.) SAS 1994. LNCS, vol. 864, pp. 223–237. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-58485-4_43CrossRefGoogle Scholar
  19. 19.
    Halbwachs, N., Proy, Y.E., Roumanoff, P.: Verification of real-time systems using linear relation analysis. Form. Methods Syst. Des. 11(2), 157–185 (1997)CrossRefGoogle Scholar
  20. 20.
    Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02658-4_52CrossRefGoogle Scholar
  21. 21.
    Le Verge, H., Wilde, D.: PolyLib. http://www.irisa.fr/polylib/
  22. 22.
    Motzkin, T.S., Raiffa, H., Thompson, G.L., Thrall, R.M.: The Double Description Method, pp. 51–74. Princeton University Press, Princeton (1953)Google Scholar
  23. 23.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institut Montefiore, B28, Université de LiègeLiègeBelgium

Personalised recommendations