Exploring Flow Psychophysiology in Knowledge Work

  • Michael T. KnierimEmail author
  • Raphael Rissler
  • Anuja Hariharan
  • Mario Nadj
  • Christof Weinhardt
Conference paper
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 29)


We report on a first exploration of a new paradigm to study flow physiology in knowledge work that we call controlled experience sampling (cESM) in order to build a bridge for flow physiology research to more unstructured tasks. Results show that the approach elicits a consistent flow experience with intensities as least as high as in an established difficulty-manipulated math task. Yet, significantly lower stress perceptions and heart rate variability (HRV) responses are found in the cESM approach which highlights gaps and consequences for the diagnostic potential of HRV features for the understanding of flow physiology and automated flow observation in bio-adaptive systems.


Flow Psychophysiology Knowledge work Adaptive systems 


  1. 1.
    Csikszentmihalyi, M.: Flow and the Psychology of Discovery and Invention. Harper Collins, New York (1996)Google Scholar
  2. 2.
    Bakker, A.B., van Woerkom, M.: Flow at work: a self-determination perspective. Occup. Heal. Sci. 1, 47–65 (2017)CrossRefGoogle Scholar
  3. 3.
    Spurlin, S., Csikszentmihalyi, M.: Will work ever be fun again? In: Fullagar, C.J., Delle Fave, A. (eds.) Flow at Work: Measurement and Implications, pp. 176–187 (2017)Google Scholar
  4. 4.
    Quinn, R.W.: Flow in knowledge performance experience. Adm. Sci. Q. 50, 610–641 (2005)CrossRefGoogle Scholar
  5. 5.
    Ceja, L., Navarro, J.: “Suddenly I get into the zone”: examining discontinuities and nonlinear changes in flow experiences at work. Hum. Relations. 65, 1101–1127 (2012)CrossRefGoogle Scholar
  6. 6.
    Knierim, M.T., Rissler, R., Dorner, V., Maedche, A., Weinhardt, C.: The psychophysiology of flow: a systematic review of peripheral nervous system features. Lect. Notes Inf. Syst. Organ. 25, 109–120 (2017)CrossRefGoogle Scholar
  7. 7.
    Harris, D.J., Vine, S.J., Wilson, M.R.: Neurocognitive mechanisms of the flow state. Prog. Brain Res. 237, 221–243 (2017)CrossRefGoogle Scholar
  8. 8.
    Adam, M.T.P., Gimpel, H., Maedche, A., Riedl, R.: Design blueprint for stress-sensitive adaptive enterprise systems. Bus. Inf. Syst. Eng. 59, 277–291 (2016)CrossRefGoogle Scholar
  9. 9.
    Rissler, R., Nadj, M., Li, M.X., Knierim, M.T., Maedche, A.: Got flow? Using machine learning on physiological data to classify flow. In: Proceedings of the Conference of Human Factors in Computing Systems (CHI) (2018)Google Scholar
  10. 10.
    Léger, P.M., Davis, F.D., Cronan, T.P., Perret, J.: Neurophysiological correlates of cognitive absorption in an enactive training context. Comput. Human Behav. 34, 273–283 (2014)CrossRefGoogle Scholar
  11. 11.
    Moller, A.C., Meier, B.P., Wall, R.D.: Developing an experimental induction of flow: effortless action in the lab. In: Bruya, B. (ed.) Effortless Attention, pp. 191–204 (2010)CrossRefGoogle Scholar
  12. 12.
    Frey, C.B., Osborne, M.A.: The future of employment: how susceptible are jobs to computerisation? Technol. Forecast. Soc. Change. 114, 254–280 (2017)CrossRefGoogle Scholar
  13. 13.
    Csikszentmihalyi, M., Hunter, J.: Happiness in everyday life: the uses of experience sampling. J. Happiness Stud. 4, 185–199 (2003)CrossRefGoogle Scholar
  14. 14.
    Klarkowski, M.: The Psychophysiologial Evaluation of the Player Experience (2017)Google Scholar
  15. 15.
    Csikszentmihalyi, M.: Beyond Boredom and Anxiety. Jossey-Bass, San Francisco, CA (1975)Google Scholar
  16. 16.
    Nakamura, J., Csikszentmihalyi, M.: Flow theory and research. In: Lopez, S., Snyder, C.R. (eds.) Oxford Handbook of Positive Psychology, pp. 195–206. Oxford University Press, New York (2009)Google Scholar
  17. 17.
    Swann, C., Keegan, R.J., Piggott, D., Crust, L.: A systematic review of the experience, occurrence, and controllability of flow states in elite sport. Psychol. Sport Exerc. 13, 807–819 (2012)CrossRefGoogle Scholar
  18. 18.
    Gruzelier, J., Inoue, A., Smart, R., Steed, A., Steffert, T.: Acting performance and flow state enhanced with sensory-motor rhythm neurofeedback comparing ecologically valid immersive VR and training screen scenarios. Neurosci. Lett. 480, 112–116 (2010)CrossRefGoogle Scholar
  19. 19.
    de Manzano, O., Theorell, T., Harmat, L., Ullén, F.: The psychophysiology of flow during piano playing. Emotion 10, 301–311 (2010)CrossRefGoogle Scholar
  20. 20.
    Harmat, L., de Manzano, Ö., Theorell, T., Högman, L., Fischer, H., Ullén, F.: Physiological correlates of the flow experience during computer game playing. Int. J. Psychophysiol. 97, 1–7 (2015)CrossRefGoogle Scholar
  21. 21.
    Erhard, K., Kessler, F., Neumann, N., Ortheil, H.J., Lotze, M.: Professional training in creative writing is associated with enhanced fronto-striatal activity in a literary text continuation task. Neuroimage 100, 15–23 (2014)CrossRefGoogle Scholar
  22. 22.
    McQuillan, J., Conde, G.: The conditions of flow in reading: two studies of optimal experience. Read. Psychol. 17, 109–135 (1996)CrossRefGoogle Scholar
  23. 23.
    Moneta, G.B.: On the measurement and conceptualization of flow. In: Engeser, S. (ed.) Advances in Flow Research, pp. 23–50 (2012)CrossRefGoogle Scholar
  24. 24.
    Tian, Y., Bian, Y., Han, P., Wang, P., Gao, F., Chen, Y.: Physiological signal analysis for evaluating flow during playing of computer games of varying difficulty. Front. Psychol. 8, 1–10 (2017)Google Scholar
  25. 25.
    de Manzano, O., Theorell, T., Harmat, L., Ullén, F., de Manzano, Ö., Theorell, T., Harmat, L., Ullén, F.: The psychophysiology of flow during piano playing. Emotion 10, 301–311 (2010)CrossRefGoogle Scholar
  26. 26.
    Harmat, L., Ullen, F., de Manzano, O., Olsson, E., Elofsson, U., von Scheele, B., Theorell, T.: Heart rate variability during piano playing: a case study of three professional solo pianists playing a self-selected and a difficult prima vista piece. Music Med. 3, 102–107 (2011)CrossRefGoogle Scholar
  27. 27.
    Engeser, S., Rheinberg, F.: Flow, performance and moderators of challenge-skill balance. Motiv. Emot. 32, 158–172 (2008)CrossRefGoogle Scholar
  28. 28.
    Tozman, T., Magdas, E.S., MacDougall, H.G., Vollmeyer, R.: Understanding the psychophysiology of flow: a driving simulator experiment to investigate the relationship between flow and heart rate variability. Comput. Human Behav. 52, 408–418 (2015)CrossRefGoogle Scholar
  29. 29.
    Klarkowski, M., Johnson, D., Wyeth, P., Phillips, C., Smith, S.: Psychophysiology of challenge in play: EDA and self-reported arousal. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 1930–1936. ACM Press, New York, New York, USA (2016)Google Scholar
  30. 30.
    Bian, Y., Yang, C., Gao, F., Li, H., Zhou, S., Li, H., Sun, X., Meng, X.: A framework for physiological indicators of flow in VR games: construction and preliminary evaluation. Pers. Ubiquitous Comput. 20, 821–832 (2016)CrossRefGoogle Scholar
  31. 31.
    Keller, J., Bless, H., Blomann, F., Kleinböhl, D.: Physiological aspects of flow experiences: skills-demand-compatibility effects on heart rate variability and salivary cortisol. J. Exp. Soc. Psychol. 47, 849–852 (2011)CrossRefGoogle Scholar
  32. 32.
    Ulrich, M., Keller, J., Gro, G., Grön, G.: Neural signatures of experimentally induced flow experiences identified in a typical fMRI block design with BOLD imaging. Soc. Cogn. Affect. Neurosci. 11, 496–507 (2016)CrossRefGoogle Scholar
  33. 33.
    Galluch, P.S., Grover, V., Thatcher, J.B.: Interrupting the workplace: examining stressors in an information technology context. J. Assoc. Inf. Syst. 16, 1–47 (2015)Google Scholar
  34. 34.
    Flower, L., Hayes, J.R.: A cognitive process theory of writing. Coll. Compos. Commun. 32, 365–387 (1981)CrossRefGoogle Scholar
  35. 35.
    Doran, G.T.: There’s a S.M.A.R.T. way to write managements’s goals and objectives. Manage. Rev. 70, 35–36 (1981)Google Scholar
  36. 36.
    Ulrich, M., Keller, J., Hoenig, K., Waller, C., Grön, G.: Neural correlates of experimentally induced flow experiences. Neuroimage 86, 194–202 (2014)CrossRefGoogle Scholar
  37. 37.
    Keller, J.: The flow experience revisited: the influence of skills-demands-compatibility on experiential and physiological indicators. In: Harmat, L., Andersen, F.O., Ullén, F., Wright, J., Sadlo, G. (eds.) Flow Experience, pp. 351–374 (2016)CrossRefGoogle Scholar
  38. 38.
    Tams, S., Hill, K., Ortiz de Guinea, A., Thatcher, J., Grover, V.: NeuroIS—alternative or complement to existing methods? Illustrating the holistic effects of neuroscience and self-reported data in the context of technostress research. J. Assoc. Inf. Syst. 15, 723–753 (2014)Google Scholar
  39. 39.
    Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59 (1994)CrossRefGoogle Scholar
  40. 40.
    Makowski, D.: NeuroKit (2016).
  41. 41.
    Martinez, C.A.G., Quintana, A.O., Vila, X.A., Touriño, M.J.L., Rodriguez-Liñares, L., Presedo, J.M.R., Penin, A.J.M.: Heart Rate Variability Analysis with the R Package RHRV. Springer (2017)Google Scholar
  42. 42.
    Rissler, R., Nadj, M., Adam, M.T.P., Mädche, A.: Towards an integrative theoretical framework of IT-mediated interruptions. In: Proceedings of the 25th European Conference on Information Systems (ECIS), Guimarães, Portugal, pp. 1950–1967 (2017)Google Scholar
  43. 43.
    Tozman, T., Zhang, Y.Y., Vollmeyer, R.: Inverted U-shaped function between flow and cortisol release during chess play. J. Happiness Stud. 18, 1–22 (2017)CrossRefGoogle Scholar
  44. 44.
    Katahira, K., Yamazaki, Y., Yamaoka, C., Ozaki, H., Nakagawa, S., Nagata, N.: EEG correlates of the flow state: a combination of increased frontal theta and moderate frontocentral alpha rhythm in the mental arithmetic task. Front. Psychol. 9, 1–11 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael T. Knierim
    • 1
    Email author
  • Raphael Rissler
    • 1
  • Anuja Hariharan
    • 1
  • Mario Nadj
    • 1
  • Christof Weinhardt
    • 1
  1. 1.Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations