Advertisement

The Philosophy of Quantitative Methods

  • Brian D. Haig
Chapter
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 45)

Abstract

This chapter undertakes a philosophical examination of four prominent quantitative research methods that are employed in the behavioural sciences. It begins by outlining a scientific realist methodology that can help illuminate the conceptual foundations of behavioural research methods. Typically, these methods contribute to either the detection of empirical phenomena or the construction of explanatory theory. The methods selected for critical examination are exploratory data analysis, Bayesian confirmation theory, meta-analysis, and causal modelling. The chapter concludes with a brief consideration of directions that might be taken in future philosophical work on quantitative methods. Two additional quantitative methods, exploratory factor analysis and tests of statistical significance, are examined in more detail in separate chapters.

References

  1. Anastasi, A., & Urbina, S. (1997). Psychological testing (7th ed.). Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  2. Bangert-Drowns, R. L. (1986). Review of developments in meta-analytic method. Psychol. Bull., 99, 388–399.CrossRefGoogle Scholar
  3. Behrens, J. T., & Yu, C.-H. (2003). Exploratory data analysis. In J. A. Schinka & W. F. Velicer (Eds.), Handbook of psychology (Vol. 2, pp. 33–64). New York: Wiley.Google Scholar
  4. Bhaskar, R. (1975). A realist philosophy of science. Brighton, England: Harvester.Google Scholar
  5. Bhaskar, R. (1979). The possibility of naturalism. Brighton, England: Harvester.Google Scholar
  6. Block, N. J. (1976). Fictionalism, functionalism, and factor analysis. In R. S. Cohen, C. A. Hooker, & A. C. Michalos (Eds.), Boston studies in the philosophy of science (Vol. 32, pp. 127–141). Dordrecht, The Netherlands: Reidel.Google Scholar
  7. Borsboom, D. (2005). Measuring the mind: Conceptual issues in contemporary psychometrics. Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
  8. Borsboom, D. (2008). Latent variable theory. Measurement: Interdisciplinary Research and Perspectives, 6, 25–53.Google Scholar
  9. Bunge, M. (2008). Bayesianism: Science or-pseudoscience? International Review of Victimology, 15, 165–178.CrossRefGoogle Scholar
  10. Chow, S. L. (1996). Statistical significance: Rationale, validity, and utility. London, England: Sage.Google Scholar
  11. Cliff, N. (1983). Some cautions concerning the application of causal modeling methods. Multivariate Behavioral Research, 18, 115–126.CrossRefGoogle Scholar
  12. Cook, T. D., Cooper, H., Cordray, D. S., Hartmann, H., Hedges, L. V., Light, R. J., et al. (1992). Meta-analysis for explanation: A casebook. New York: Russell Sage Foundation.Google Scholar
  13. Earman, J. (1992). Bayes or bust? A critical examination of Bayesian confirmation theory. Cambridge, MA: MIT Press.Google Scholar
  14. Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap. New York: Chapman & Hall.CrossRefGoogle Scholar
  15. Ehrenberg, A. S. C., & Bound, J. A. (1993). Predictability and prediction. Journal of the Royal Statistical Society, Part 2, 156, 167–206.CrossRefGoogle Scholar
  16. Fidell, L. S., & Tabachnick, B. G. (2003). Preparatory data analysis. In J. A. Schibehaviornka & W. F. Velicer (Eds.), Handbook of psychology (Vol. 2, pp. 115–121). New York: Wiley.Google Scholar
  17. Glass, G. V. (1972). The wisdom of scientific inquiry on education. Journal of Research in Science Teaching, 9, 3–18.CrossRefGoogle Scholar
  18. Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5, 3–8.CrossRefGoogle Scholar
  19. Glass, G. V., & Kleigl, R. M. (1983). An apology for research integration in the study of psychotherapy. Journal of Consulting and Clinical Psychology, 51, 28–41.CrossRefGoogle Scholar
  20. Glass, G. V., McGaw, B., & Smith, M. L. (1981). Meta-analysis in social research. Beverly Hills, CA: Sage.Google Scholar
  21. Glymour, C. N. (1980). Theory and evidence. Princeton, NJ: Princeton University Press.Google Scholar
  22. Godfrey-Smith, P. (2009). Causal pluralism. In H. Beebee, C. Hitchcock, & P. Menzies (Eds.), The Oxford handbook of causation (pp. 326–337). Oxford, England: Oxford University Press.Google Scholar
  23. Good, I. J. (1983). The philosophy of exploratory data analysis. Philosophy of Science, 50, 283–295.CrossRefGoogle Scholar
  24. Gottfredson, G. D. (1984). A theory-ridden approach to program evaluation. American Psychologist, 39, 1101–1112.CrossRefGoogle Scholar
  25. Gould, S. J. (1996). The mismeasure of man (2nd ed.). New York: Norton.Google Scholar
  26. Greenwood, J. D. (1992). Realism, empiricism, and social constructionism. Theory and Psychology, 2, 131–151.CrossRefGoogle Scholar
  27. Haig, B. D. (1987). Scientific problems and the conduct of research. Educational Philosophy and Theory, 19, 22–32.CrossRefGoogle Scholar
  28. Haig, B. D. (2005). An abductive theory of scientific method. Psychological Methods, 10, 371–388.CrossRefGoogle Scholar
  29. Haig, B. D. (2009). Inference to the best explanation: A neglected approach to theory appraisal in psychology. American Journal of Psychology, 122, 219–234.PubMedGoogle Scholar
  30. Harré, R., & Madden, E. H. (1975). Causal powers. Oxford, England: Blackwell.Google Scholar
  31. Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. New York: Academic Press.Google Scholar
  32. Hooker, C. A. (1987). A realistic theory of science. New York: State University of New York Press.Google Scholar
  33. Howson, C., & Urbach, P. (2006). Scientific reasoning: The Bayesian approach (3rd ed.). La Salle, IL: Open Court.Google Scholar
  34. Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta-analysis: Correcting error and bias in research findings (2nd ed.). Newbury Park, CA: Sage.CrossRefGoogle Scholar
  35. Kaplan, D. (2000). Structural equation modeling: Foundations and extensions. Thousand Oaks, CA: Sage.Google Scholar
  36. Kenny, D. (1979). Correlation and causation. New York: Wiley.Google Scholar
  37. Kuhn, T. S. (1996). The structure of scientific revolutions (3rd ed.). Chicago, IL: University of Chicago Press (originally published, 1962).Google Scholar
  38. Laudan, L. (1981). Science and hypothesis. Dordrecht, The Netherlands: Reidel.CrossRefGoogle Scholar
  39. Lipton, P. (2004). Inference to the best explanation (2nd ed.). London, England: Routledge.Google Scholar
  40. Manicas, P. T. (1989). Explanation and quantification. In B. Glassner & J. D. Moreno (Eds.), The qualitative-quantitative distinction in the social sciences (pp. 179–205). Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
  41. Manicas, P. T., & Secord, P. F. (1983). Implications for psychology of the new philosophy of science. American Psychologist, 38, 399–413.CrossRefGoogle Scholar
  42. Markus, K., Hawes, S. S., & Thasites, R. (2008). Abductive inference to psychological variables: Steiger’s question and best explanations in psychopathy. Journal of Clinical Psychology, 64, 1069–1088.CrossRefGoogle Scholar
  43. Maxwell, G. (1962). The ontological status of theoretical entities. In H. Feigl & G. Maxwell (Eds.), Minnesota studies in the philosophy of science (Vol. 3, pp. 3–28). Minneapolis, MN: University of Minnesota Press.Google Scholar
  44. McGrew, T. (2003). Confirmation, heuristics, and explanatory reasoning. British Journal for the Philosophy of Science, 54, 553–567.CrossRefGoogle Scholar
  45. McGuire, W. J. (1997). Creative hypothesis generating in psychology: Some useful heuristics. Annual Review of Psychology, 48, 1–30.CrossRefGoogle Scholar
  46. Michell, J. (2004). The place of qualitative research in psychology. Qualitative Research in Psychology, 1, 307–319.CrossRefGoogle Scholar
  47. Mulaik, S.A. (1985) Exploratory Statistics and Empiricism. Philosophy of Science, 52(3), 410–430.CrossRefGoogle Scholar
  48. Nickles, T. (1981). What is a problem that we might solve-it? Synthese, 47, 85–118.CrossRefGoogle Scholar
  49. Nickles, T. (1987). Twixt method and madness. In N. J. Nersessian (Ed.), The process of science (pp. 41–67). Dordrecht, The Netherlands: Martinus Nijhoff.CrossRefGoogle Scholar
  50. Pratschke, J. (2003). Realistic models? Critical realism and statistical models in the social sciences. Philosophica, 71, 13–38.Google Scholar
  51. Proctor, R. W., & Capaldi, E. J. (2001). Empirical evaluation and justification of methodologies in psychological science. Psychological Bulletin, 127, 759–772.CrossRefGoogle Scholar
  52. Psillos, S. (2004). Inference to the best explanation and Bayesianism =. In F. Stadler (Ed.), Induction and deduction in the sciences (pp. 83–91). Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
  53. Rozeboom, W. W. (1997). Good science is abductive, not hypothetico-deductive. In L. L. Harlow, S. A. Mulaik, & J. H. Steiger (Eds.), What if there were no significance tests? (pp. 335–391). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  54. Salmon, W. C. (1984). Scientific explanation and the causal structure of the world. Princeton, NJ: Princeton University Press.Google Scholar
  55. Sayer, A. (1992). Methods in social science: A realist approach (2nd ed.). London, England: Routledge.Google Scholar
  56. Schmidt, F. L. (1992). What do data really mean? Research findings, meta-analysis, and cumulative knowledge in psychology. American Psychologist, 47, 1173–1181.CrossRefGoogle Scholar
  57. Schmidt, F. L. (1993). Meta-analysis and cumulative knowledge. Contemporary Psychology, 38, 1163–1165.CrossRefGoogle Scholar
  58. Simon, H. A. (1985). Spurious correlation: A causal interpretation. In H. M. Blalock (Ed.), Causal models in the social sciences (2nd ed., pp. 7–21). New York: Aldine.Google Scholar
  59. Smith, M. L., Glass, G. V., & Miller, T. I. (1980). The benefits of psychotherapy. Baltimore, MD: Johns Hopkins University Press.Google Scholar
  60. Sohn, D. (1996). Meta-analysis and science. Theory and Psychology, 6, 229–246.CrossRefGoogle Scholar
  61. Strauss, A. L. (1987). Qualitative analysis for social scientists. New York: Cambridge University Press.CrossRefGoogle Scholar
  62. Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.Google Scholar
  63. Thagard, P. (1999). How scientists explain disease. Princeton, NJ: Princeton University Press.Google Scholar
  64. Trout, J. D. (1998). Measuring the intentional world: Realism, naturalism, and quantitative methods in the behavioral sciences. New York, NY: Oxford University Press.CrossRefGoogle Scholar
  65. Tukey, J. W. (1962). The future of data analysis. The Annals of Mathematical Statistics, 33, 1–67.CrossRefGoogle Scholar
  66. Tukey, J. W. (1969). Analyzing data: Sanctification or detective work? American Psychologist, 24, 83–91.CrossRefGoogle Scholar
  67. Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison Wesley.Google Scholar
  68. Tukey, J. W. (1980). We need both exploratory and confirmatory. American Statistician, 34, 23–25.Google Scholar
  69. Weisberg, J. (2009). Locating IBE in the Bayesian framework. Synthese, 167, 125–143.CrossRefGoogle Scholar
  70. Wilkinson, L., & The Task Force on Statistical Inference. (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54, 594–604.CrossRefGoogle Scholar
  71. Woodward, J. (1989). Data and phenomena. Synthese, 79, 393–472.CrossRefGoogle Scholar
  72. Yu, C.-H. (2006). Philosophical foundations of quantitative research methodology. Lanham, MD: University Press of America.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations