Segmentation of Retinal Layers in OCT Images of the Mouse Eye Utilizing Polarization Contrast

  • Marco AugustinEmail author
  • Danielle J. Harper
  • Conrad W. Merkle
  • Christoph K. Hitzenberger
  • Bernhard Baumann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11039)


Retinal layer segmentation is crucial for the interpretation and visualization of optical coherence tomography (OCT) image data. In this work we utilized a polarization-sensitive OCT system to enhance the segmentation of the retinal pigment epithelium in the mouse retina together with the segmentation of five additional retinal surfaces. Hereby, retinal layers are segmented on a tomogram basis using a graph-based approach in the reflectivity images as well as the cross-polarization images. Thickness changes in the superoxide dismutase 1 (SOD1) knock-out mouse model were assessed and compared to a control group and revealed a thinning of the total and outer retina. Pathological drusen-like lesions were identified in the outer retina. Incorporating additional image contrast offered by the functional extensions of OCT into traditional layer segmentation approaches proved to be valuable. The proposed approach might be extended with other contrast channels such as OCT angiography.


  1. 1.
    Abràmoff, M.D., et al.: Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 3, 169–208 (2010)CrossRefGoogle Scholar
  2. 2.
    Augustin, M., et al.: In vivo characterization of spontaneous retinal neovascularization in the mouse eye by multifunctional optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 59(5), 2054–2068 (2018)CrossRefGoogle Scholar
  3. 3.
    Azuma, S., et al.: Pixel-wise segmentation of severely pathologic retinal pigment epithelium and choroidal stroma using multi-contrast jones matrix optical coherence tomography. Biomed. Opt. Express 9(7), 2955–2973 (2018)CrossRefGoogle Scholar
  4. 4.
    Baumann, B.: Polarization sensitive optical coherence tomography: a review of technology and applications. Appl. Sci. 7(5), 474 (2017)CrossRefGoogle Scholar
  5. 5.
    Chiu, S.J., et al.: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Express 18(18), 19413–19428 (2010)CrossRefGoogle Scholar
  6. 6.
    Fang, L., et al.: Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed. Opt. Express 8(5), 2732–2744 (2017)CrossRefGoogle Scholar
  7. 7.
    Garvin, M.K., et al.: Automated 3-d intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009)CrossRefGoogle Scholar
  8. 8.
    Götzinger, E., et al.: Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. Opt. Express 16(21), 16410–16422 (2008)CrossRefGoogle Scholar
  9. 9.
    Guedes, V., et al.: Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 110(1), 177–189 (2003)CrossRefGoogle Scholar
  10. 10.
    Imamura, Y., et al.: Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc. Natl. Acad. Sci. 103(30), 11282–11287 (2006)CrossRefGoogle Scholar
  11. 11.
    Kashani, A.H., et al.: Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog. Retin. Eye. Res. 60, 66–100 (2017)CrossRefGoogle Scholar
  12. 12.
    McDonough, K., et al.: A neural network approach to retinal layer boundary identification from optical coherence tomography images. In: 2015 IEEE CIBCB, pp. 1–8 (2015)Google Scholar
  13. 13.
    Park, J.R., et al.: Imaging laser-induced choroidal neovascularization in the rodent retina using optical coherence tomography angiography. Invest. Ophthalmol. Vis. Sci. 57(9), OCT331 (2016)CrossRefGoogle Scholar
  14. 14.
    Pircher, M., et al.: Polarization sensitive optical coherence tomography in the human eye. Prog. Retin. Eye Res. 30(6), 431–451 (2011)CrossRefGoogle Scholar
  15. 15.
    Schottenhamml, J., et al.: Oct-octa segmentation: a novel framework and an application to segment bruch’s membrane in the presence of drusen. Invest. Ophthalmol. Vis. Sci. 58(8), 645 (2017)Google Scholar
  16. 16.
    Srinivasan, P.P., et al.: Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology. Biomed. Opt. Express 5(2), 348–365 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Marco Augustin
    • 1
    Email author
  • Danielle J. Harper
    • 1
  • Conrad W. Merkle
    • 1
  • Christoph K. Hitzenberger
    • 1
  • Bernhard Baumann
    • 1
  1. 1.Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria

Personalised recommendations