DeepDisc: Optic Disc Segmentation Based on Atrous Convolution and Spatial Pyramid Pooling

  • Zaiwang GuEmail author
  • Peng Liu
  • Kang Zhou
  • Yuming Jiang
  • Haoyu Mao
  • Jun Cheng
  • Jiang Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11039)


The optic disc (OD) segmentation is an important step for fundus image base disease diagnosis. In this paper, we propose a novel and effective method called DeepDisc to segment the OD. It mainly contains two components: atrous convolution and spatial pyramid pooling. The atrous convolution adjusts filter’s field-of-view and controls the resolution of features. In addition, the spatial pyramid pooling module probes convolutional features at multiple scales and encodes global context information. Both of them are used to further boost OD segmentation performance. Finally, we demonstrate that our DeepDisc system achieves state-of-the-art disc segmentation performance on the ORIGA and Messidor datasets without any post-processing strategies, such as dense conditional random field.


Disc segmentation Atrous convolution Spatial pyramid pooling 


  1. 1.
    Cheng, J., et al.: Automatic optic disc segmentation with peripapillary atrophy elimination. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6224–6227. IEEE (2011)Google Scholar
  2. 2.
    Cheng, J., et al.: Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans. Med. Imaging 32(6), 1019–1032 (2013)CrossRefGoogle Scholar
  3. 3.
    Cheng, J., Tao, D., Wong, D.W.K., Liu, J.: Quadratic divergence regularized SVM for optic disc segmentation. Biomed. Opt. Express 8(5), 2687–2696 (2017)CrossRefGoogle Scholar
  4. 4.
    Cheng, J., et al.: Similarity regularized sparse group lasso for cup to disc ratio computation. Biomed. Opt. Express 8(8), 3763–3777 (2017)CrossRefGoogle Scholar
  5. 5.
    Fu, H., Cheng, J., Xu, Y., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Med. Imaging (2018)Google Scholar
  6. 6.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  7. 7.
    Joshi, G.D., Sivaswamy, J., Krishnadas, S.: Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment. IEEE Trans. Med. Imaging 30(6), 1192–1205 (2011)CrossRefGoogle Scholar
  8. 8.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  9. 9.
    Li, A., et al.: Learning supervised descent directions for optic disc segmentation. Neurocomputing 275, 350–357 (2018)CrossRefGoogle Scholar
  10. 10.
    Li, H., Hsu, W., Lee, M.L., Wong, T.Y.: Automatic grading of retinal vessel caliber. IEEE Trans. Biomed. Eng. 52(7), 1352–1355 (2005)CrossRefGoogle Scholar
  11. 11.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  12. 12.
    Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)Google Scholar
  13. 13.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). Scholar
  14. 14.
    Sevastopolsky, A.: Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network. arXiv preprint arXiv:1704.00979 (2017)
  15. 15.
    Yin, F., et al.: Model-based optic nerve head segmentation on retinal fundus images. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2626–2629. IEEE (2011)Google Scholar
  16. 16.
    Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)
  17. 17.
    Zhang, Z., et al.: ORIGA-Light: an online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3065–3068. IEEE (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Zaiwang Gu
    • 1
    • 2
    Email author
  • Peng Liu
    • 1
    • 3
  • Kang Zhou
    • 4
  • Yuming Jiang
    • 1
    • 3
  • Haoyu Mao
    • 1
  • Jun Cheng
    • 1
  • Jiang Liu
    • 1
  1. 1.Cixi Institute of Biomedical EngineeringNingbo Institute of Materials Technology and Engineering, Chinese Academy of SciencesBeijingChina
  2. 2.School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiChina
  3. 3.University of Electronic Science and Technology of ChinaChengduChina
  4. 4.School of Information Science and TechnologyShanghaiTech UniversityShanghaiChina

Personalised recommendations