Advertisement

Rigid Lens – Locally Rigid Approximations of Deformable Registration for Change Assessment in Thorax-Abdomen CT Follow-Up Scans

  • Sonja JäckleEmail author
  • Stefan Heldmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11040)

Abstract

A general problem of any deformable image registration method for change assessment is to find a good balance between computing a precise match and keeping locally differences. In this work we present the rigid lens concept dealing with this issue. The rigid lens is based on locally rigid approximation of locally precise deformations and can be used for interactive viewing and visualization of changes as well as for automatic change detection. We demonstrate the rigid lens in the context of oncological workup of thorax-abdomen CT follow-up scans and evaluate the concept for change assessment based on a study with 1492 manually annotated lesion in scans from more than 400 patients.

Keywords

Change assessment Image registration Local rigidity 

Notes

Acknowledgment

This research was supported by the AMI (Automation in Medical Imaging) project under the ICON program of the Fraunhofer Society, Germany. We gratefully acknowledge Bram van Ginneken and Colin Jacobs from the Diagnostic Image Analysis Group of Radboud University Medical Center, Nijmegen, the Netherlands for providing us data and for their value input in joint discussions.

References

  1. 1.
    Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 5, 698–700 (1987)CrossRefGoogle Scholar
  2. 2.
    Brown, L.G.: A survey of image registration techniques. ACM Computi. Surv. 24(4), 325–376 (1992)CrossRefGoogle Scholar
  3. 3.
    Dzyubachyk, O.: Comparative exploration of whole-body MR through locally rigid transforms. Int. J. Comput. Assist. Radiol. Surg. 8(4), 635–47 (2013)CrossRefGoogle Scholar
  4. 4.
    Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach. Vis. Appl. 9(5–6), 272–290 (1997)CrossRefGoogle Scholar
  5. 5.
    Goshtasby, A.A.: Image Registration: Principles, Tools and Methods. Springer, London (2012).  https://doi.org/10.1007/978-1-4471-2458-0CrossRefzbMATHGoogle Scholar
  6. 6.
    Haber, E., Heldmann, S., Modersitzki, J.: A computational framework for image-based constrained registration. Linear Algebr. Appl. 431(3–4), 459–470 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    König, L., Derksen, A., Papenberg, N., Haas, B.: Deformable image registration for adaptive radiotherapy with guaranteed local rigidity constraints. Radiat. Oncol. 11(1), 122 (2016)CrossRefGoogle Scholar
  8. 8.
    Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Nonrigid image registration using free-form deformations with a local rigidity constraint. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 639–646. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30135-6_78CrossRefGoogle Scholar
  9. 9.
    Modersitzki, J.: Numerical Methods for Image Registration. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2004)zbMATHGoogle Scholar
  10. 10.
    Modersitzki, J.: Image registration with local rigidity constraints. In: Horsch, A., Deserno, T.M., Handels, H., Meinzer, H.P., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2007, pp. 444–448. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71091-2_89CrossRefGoogle Scholar
  11. 11.
    Modersitzki, J.: FLIRT with rigidity - image registration with a local non-rigidity penalty. Int. J. Comput. Vis. 76(2), 153–163 (2008)CrossRefGoogle Scholar
  12. 12.
    Modersitzki, J.: FAIR: flexible algorithms for image registration, vol. 6. SIAM, Philadelphia (2009)CrossRefGoogle Scholar
  13. 13.
    Reaungamornrat, S., Wang, A., Uneri, A., Otake, Y., Khanna, A., Siewerdsen, J.: Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery. Phys. Med. Biol. 59(14), 3761 (2014)CrossRefGoogle Scholar
  14. 14.
    Ruthotto, L., Hodneland, E., Modersitzki, J.: Registration of dynamic contrast enhanced MRI with local rigidity constraint. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR 2012. LNCS, vol. 7359, pp. 190–198. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31340-0_20CrossRefGoogle Scholar
  15. 15.
    Schönemann, P.H.: A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1), 1–10 (1966)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)CrossRefGoogle Scholar
  17. 17.
    Staring, M., Klein, S., Pluim, J.P.W.: Evaluation of a rigidity penalty term for nonrigid registration. In: Bartoli, A., Navab, N., Lepetit, V. (eds.) Workshop on Image Registration in Deformable Environments, pp. 41–50, September 2006Google Scholar
  18. 18.
    Staring, M., Klein, S., Pluim, J.P.W.: Nonrigid registration using a rigidity constraint. In: Reinhardt, J.M., Pluim, J.P.W. (eds.) Medical Imaging 2006: Image Processing. Proceedings of the SPIE, vol. 6144, pp. 355–364, March 2006Google Scholar
  19. 19.
    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13, 376–380 (1991)CrossRefGoogle Scholar
  20. 20.
    Wahba, G.: A least squares estimate of satellite attitude. SIAM Rev. 7(3), 409–409 (1965)CrossRefGoogle Scholar
  21. 21.
    Zitová, B., Flusser, J.: Image registartion methods: a survey. Image Vision Comput. 21, 977–1000 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Fraunhofer Institute for Medical Image Computing MEVISLübeckGermany

Personalised recommendations