Advertisement

Reproducible Evaluation of Registration Algorithms for Movement Correction in Dynamic Contrast Enhancing Magnetic Resonance Imaging for Breast Cancer Diagnosis

  • I. A. IllanEmail author
  • J. Ramirez
  • J. M. Gorriz
  • K. Pinker
  • A. Meyer-Baese
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11040)

Abstract

Accurate methods for computer aided diagnosis of breast cancer increase accuracy of detection and provide support to physicians in detecting challenging cases. In dynamic contrast enhancing magnetic resonance imaging (DCE-MRI), motion artifacts can appear as a result of patient displacements. Non-linear deformation algorithms for breast image registration provide with a solution to the correspondence problem in contrast with affine models. In this study we evaluate 3 popular non-linear registration algorithms: MIRTK, Demons, SyN Ants, and compare to the affine baseline. We propose automatic measures for reproducible evaluation on the DCE-MRI breast-diagnosis TCIA-database, based on edge detection and clustering algorithms, and provide a rank of the methods according to these measures.

Keywords

Medical image processing Reproducibility DCE-MRI Registration Diffeomorphism Optical flow Non-affine registration 

Notes

Acknowledgments

This work has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No. 656886.

References

  1. 1.
    Abraham, A.: Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 8, 1–14 (2014)CrossRefGoogle Scholar
  2. 2.
    Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)CrossRefGoogle Scholar
  3. 3.
    Bloch, Nicolas, B., Jain, Ashali, Jaffe, C.C.: Data from breast-diagnosis. The Cancer Imaging Archive (2015)Google Scholar
  4. 4.
    Clark, K., et al.: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)CrossRefGoogle Scholar
  5. 5.
    Diez, Y., et al.: Comparison of methods for current-to-prior registration of breast DCE-MRI. In: Fujita, H., Hara, T., Muramatsu, C. (eds.) IWDM 2014. LNCS, vol. 8539, pp. 689–695. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07887-8_95CrossRefGoogle Scholar
  6. 6.
    Ebrahimi, M., Martel, A.L.: A general PDE-framework for registration of contrast enhanced images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 811–819. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04268-3_100CrossRefGoogle Scholar
  7. 7.
    Kim, M., Wu, G., Shen, D.: Hierarchical alignment of breast DCE-MR images by groupwise registration and robust feature matching. Med. Phys. 39(1), 353–366 (2012)CrossRefGoogle Scholar
  8. 8.
    Klein, A., et al.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46(3), 786–802 (2009)CrossRefGoogle Scholar
  9. 9.
    Li, X., Morgan, P.S., Ashburner, J., Smith, J., Rorden, C.: The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J. Neurosci. Methods 264, 47–56 (2016)CrossRefGoogle Scholar
  10. 10.
    Lowekamp, B.C., Chen, D.T., Ibanez, L., Blezek, D.: The design of SimpleITK. Front. Neuroinform. 7, 1–45 (2013)CrossRefGoogle Scholar
  11. 11.
    Martel, A.L., Froh, M.S., Brock, K.K., Plewes, D.B., Barber, D.C.: Evaluating an optical-flow-based registration algorithm for contrast-enhanced magnetic resonance imaging of the breast. Phys. Med. Biol. 52(13), 3803 (2007)CrossRefGoogle Scholar
  12. 12.
    Melbourne, A., Atkinson, D., White, M.J., Collins, D., Leach, M., Hawkes, D.: Registration of dynamic contrast-enhanced MRI using a progressive principal component registration (PPCR). Phys. Med. Biol. 52(17), 5147 (2007)CrossRefGoogle Scholar
  13. 13.
    Ong, R.E., Ou, J.J., Miga, M.I.: Non-rigid registration of breast surfaces using the laplace and diffusion equations. BioMed. Eng. OnLine 9, 8 (2010)CrossRefGoogle Scholar
  14. 14.
    Othman, Z., Haron, H., Kadir, M.R.A., Rafiq, M.: Comparison of Canny and Sobel edge detection in MRI images. Comput. Sci. Biomech. Tissue Eng. Group Inf. Syst. 133–136 (2009)Google Scholar
  15. 15.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  16. 16.
    Schnabel, J.A., et al.: Validation of nonrigid image registration using finite-element methods: application to breast MR images. IEEE Trans. Med. Imaging 22(2), 238–247 (2003)CrossRefGoogle Scholar
  17. 17.
    Siegel, R.L., Miller, K.D.: Cancer statistics. CA Cancer J. Clin. 68(1), 7–30 (2018)CrossRefGoogle Scholar
  18. 18.
    Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)CrossRefGoogle Scholar
  19. 19.
    Thirion, B., Varoquaux, G., Dohmatob, E., Poline, J.B.: Which fMRI clustering gives good brain parcellations? Front. Neurosci. 8, 1–13 (2014)CrossRefGoogle Scholar
  20. 20.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1, Suppl. 1), S61–S72 (2009)CrossRefGoogle Scholar
  21. 21.
    Yaniv, Z., Lowekamp, B.C., Johnson, H.J., Beare, R.: SimpleITK image-analysis notebooks: a collaborative environment for education and reproducible research. J. Dig. Imaging 31(3), 290–303 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • I. A. Illan
    • 1
    • 2
    Email author
  • J. Ramirez
    • 2
  • J. M. Gorriz
    • 2
  • K. Pinker
    • 3
    • 4
  • A. Meyer-Baese
    • 1
  1. 1.Scientific Computing DepartmentFlorida State UniversityTallahasseeUSA
  2. 2.Department of Signal Theory, Networking and Communications, DaSCI (Data Science and Computational Intelligence Research Institute)Universidad de GranadaGranadaSpain
  3. 3.Department of RadiologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  4. 4.Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender ImagingMedical University of Vienna/AKH WienViennaAustria

Personalised recommendations