SePoMa: Semantic-Based Data Analysis for Political Marketing

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 883)


Political marketing is a discipline concerned with the study of the right political communication strategies. Precise decision making in political marketing largely depends upon the thorough analysis of vast amounts of data from a variety of sources. Relevant information from mass media, social networks, Web pages, etc., should be gathered and scrutinized in order to provide the insights necessary to properly adjust the political parties’ and politicians’ messages to society. The main challenges in this context are, first of all, the integration of data from disparate sources, and hence its analysis to extract the relevant information to use in the decision-making process. Big data and Semantic Web technologies provide the means to face these challenges. In this paper, we propose SePoMa, a framework that applies semantic Big data analysis techniques to the political domain to assist in the definition of political marketing strategies for political entities. SePoMa explores the pertinent structured, semi-structured and unstructured data sources and automatically populates the political ontology, which is then examined to generate electorate knowledge. An exemplary use case scenario is described that illustrates the benefits of the framework for the automation of electoral research and the support of political marketing strategies.


Semantic big data analysis Political marketing Ontology Ontology population 



This work has been supported by the Spanish National Research Agency (AEI) and the European Regional Development Fund (FEDER/ERDF) through project KBS4FIA (TIN2016-76323-R).


  1. 1.
    Mendoza Bustamante, L.B.: Estrategia de comunicacion de mercadotecnia politica para una eleccion municipal. Universidad de las Américas Puebla (2004)Google Scholar
  2. 2.
    Juárez, J.: Hacia un estudio del marketing político: limitaciones teóricas y metodológicas. Espiral IX 27, 60–95 (2003)Google Scholar
  3. 3.
    Costa, L.: Manual de Marketing Político (2012). Accessed 10 June 2018
  4. 4.
    Valdez Zepeda, A.: Las campañas electorales en la nueva sociedad de la información y el conocimiento. Estudios Políticos 20, 155–165 (2010)Google Scholar
  5. 5.
    Alonso Coto, M.A., Adell, Á.: Marketing político 2.0: lo que todo candidato necesita saber para ganar las elecciones. In: Gestión 2000, Barcelona (2011)Google Scholar
  6. 6.
    Laney, D.: 3D data management: controlling data volume, velocity, and variety. In: Application Delivery Strategies (2001). Accessed 24 July 2018
  7. 7.
    Maté Jiménez, C.: Big data. Un nuevo paradigma de análisis de datos. Revista: Anales de Mecánica y Electricidad 41(6), 10–16 (2014)Google Scholar
  8. 8.
    Beyer, M., Laney, D.: The Importance of “Big Data”: A Definition. Gartner Publications, pp. 1–7, June 2012Google Scholar
  9. 9.
    Mayer-Schönberger, V., Cukier, K.: Big Data: A Revolution That Will Transform How We Live, Work, and Think. Houghton Mifflin Harcourt, Boston (2013)Google Scholar
  10. 10.
    Kale, S.A., Dandge, S.S.: Understanding the big data problems and their solutions using Hadoop and map-reduce. Int. J. Appl. Innov. Eng. Manag. (IJAIEM) 3(3), 439–445 (2014)Google Scholar
  11. 11.
    Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intell. Syst. 21(3), 96–101 (2006)CrossRefGoogle Scholar
  12. 12.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data—the story so far. Int. J. Semantic Web Inf. Syst. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  13. 13.
    Rahoman, M.-M., Ichise, R.: A proposal of a temporal semantics aware linked data information retrieval framework. J. Intell. Inf. Syst. 50(3), 573–595 (2018)CrossRefGoogle Scholar
  14. 14.
    Di Iorio, A., Rossi, D.: Capturing and managing knowledge using social software and semantic web technologies. Inf. Sci. 432, 1–21 (2018)CrossRefGoogle Scholar
  15. 15.
    Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods. Data Knowl. Eng. 25(1–2), 161–197 (1998)CrossRefGoogle Scholar
  16. 16.
    Rodríguez-García, M.Á., Hoehndorf, R.: Inferring ontology graph structures using OWL reasoning. BMC Bioinform. 19(1), 7 (2018)CrossRefGoogle Scholar
  17. 17.
    García-Sánchez, F., Fernández-Breis, J.T., Valencia-García, R., Gómez, J.M., Martínez-Béjar, R.: Combining semantic web technologies with multi-agent systems for integrated access to biological resources. J. Biomed. Inform. 41(5), 848–859 (2008)CrossRefGoogle Scholar
  18. 18.
    Santipantakis, G., Kotis, K., Vouros, G.A.: OBDAIR: ontology-based distributed framework for accessing, integrating and reasoning with data in disparate data sources. Expert Syst. Appl. 90, 464–483 (2017)CrossRefGoogle Scholar
  19. 19.
    Neuböck, T., Neumayr, B., Schrefl, M., Schütz, C.: Ontology-driven business intelligence for comparative data analysis. In: Zimányi, E. (ed.) eBISS 2013. LNBIP, vol. 172, pp. 77–120. Springer, Cham (2014). Scholar
  20. 20.
    Zamudio, Y.: Etapas del plan de marketing, UVEG (2015). Accessed 10 June 2018
  21. 21.
    Al Shayji, S., El Kadhi, N.E.Z.: Building fuzzy-logic ontology for political decision-makers. Int. J. Math. Models Methods Appl. Sci. 5(5), 991–1001 (2011)Google Scholar
  22. 22.
    Andreasen, T., Christiansen, H., Eberholst, M.K.: Ontology-based roles association networks for visualizing trends in political debate. In: Christiansen, H., Stojanovic, I., Papadopoulos, G.A. (eds.) CONTEXT 2015. LNCS (LNAI), vol. 9405, pp. 477–482. Springer, Cham (2015). Scholar
  23. 23.
    Wu, Y., Wong, J., Deng, Y., Chang, K.: An exploration of social media in public opinion convergence: elaboration likelihood and semantic networks on political events. In: 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing, Sydney, NSW, Australia, pp. 903–910. IEEE (2011)Google Scholar
  24. 24.
    Al Shayji, S., El, N., El, Z., Wong, P.Z.: Building ontology for the political domain. In: Arabnia, H.R., Marsh, A., Solo, A.M.G. (eds.) Proceedings of the 2011 International Conference on Semantic Web and Web Services, pp. 106–112. CSREA Press, Las Vegas (2011)Google Scholar
  25. 25.
    Wongthontham, P., Abu-Salih, B.: Ontology-based approach for identifying the credibility domain in social big data. Cornell University Library (arXiv) (2018). Accessed 24 July 2018
  26. 26.
    Bihani, P., Patil, S.: A comparative study of data analysis techniques. Int. J. Emerg. Trends Technol. Comput. Sci. (IJETTCS) 3(2), 95–101 (2014)Google Scholar
  27. 27.
    Gómez Vieites, A., Suárez Rey, C.: Sistemas de información : herramientas prácticas para la gestión empresarial. RA-MA (2011)Google Scholar
  28. 28.
    W3C: RDF—Semantic Web Standards (2014). Accessed 10 June 2018
  29. 29.
    Hu, B., Carvalho, N., Matsutsuka, T.: Towards big linked data: a large-scale, distributed semantic data storage. Int. J. Data Wareh. Min. 9(4), 19–43 (2013)CrossRefGoogle Scholar
  30. 30.
    Barceló Valenzuela, M., Sánchez Schmitz, G.G.A., Perez-Soltero, A.: La web semántica como apoyo a la gestión del conocimiento y al modelo organizacional. Revista Ingeniería Informática 12 (abril), 1–14 (2006)Google Scholar
  31. 31.
    Konys, A.: A framework for analysis of ontology-based data access. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS (LNAI), vol. 9876, pp. 397–408. Springer, Cham (2016). Scholar
  32. 32.
    Brunetti, J.M., Auer, S., García, R., Klímek, J., Nečaský, M.: Formal linked data visualization model. In: Proceedings of International Conference on Information Integration and Web-Based Applications and Services—IIWAS 2013, pp. 309–318. ACM Press, New York (2013)Google Scholar
  33. 33.
    Airinei, D., Berta, D.: Semantic business intelligence—a new generation of business intelligence. Inform. Econ. 16(2), 72–80 (2012)Google Scholar
  34. 34.
    Kureychik, V., Semenova, A.: Combined method for integration of heterogeneous ontology models for big data processing and analysis. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds.) CSOC 2017. AISC, vol. 573, pp. 302–311. Springer, Cham (2017). Scholar
  35. 35.
    Bikakis, N., Sellis, T.: Exploration and visualization in the web of big linked data: a survey of the state of the art. In: 6th International Workshop on Linked Web Data Management (LWDM 2016), Bordeaux, France, pp. 1–8 (2016)Google Scholar
  36. 36.
    Nuzzolese, A.G., Presutti, V., Gangemi, A., Peroni, S., Ciancarini, P.: Aemoo: linked data exploration based on knowledge patterns. Semantic Web 8(1), 87–112 (2017)CrossRefGoogle Scholar
  37. 37.
    Moreira, S., Batista, D., Carvalho, P., Couto, F.M., Silva, M.J.: POWER—politics ontology for web entity retrieval. In: Salinesi, Camille, Pastor, Oscar (eds.) CAiSE 2011. LNBIP, vol. 83, pp. 489–500. Springer, Heidelberg (2011). Scholar
  38. 38.
    Ortiz, A.: Polionto: ontology reuse with automatic text extraction from political documents. In: 6th Doctoral Symposium in Informatics Engineering, pp. 1–12. Universidade do Porto, Portugal (2011)Google Scholar
  39. 39.
    Daquino, M., Peroni, S., Tomasi, F., Vitali, F.: Political roles ontology (PRoles): enhancing archival authority records through semantic web technologies. Proc. Comput. Sci. 38, 60–67 (2014)CrossRefGoogle Scholar
  40. 40.
    Alcock, C., Oliver, S., Smethurst, M., Somerville, A., Woodhams, B.: UK Parliament Ontologies, Parliament of the United Kingdom (2018). Accessed 6 June 2018
  41. 41.
    Buitelaar, P., Cimiano, P.: Ontology Learning and Population: Bridging the Gap Between Text and Knowledge. IOS Press, Amsterdam (2008)zbMATHGoogle Scholar
  42. 42.
    Boumlik, A., Bahaj, M.: Advanced set of rules to generate ontology from relational database. J. Softw. 11(1), 27–43 (2016)CrossRefGoogle Scholar
  43. 43.
    García-Sánchez, F., García-Díaz, J.A., Gómez-Berbís, J.M., Valencia-García, R.: Financial knowledge instantiation from semi-structured, heterogeneous data sources. In: Silhavy, R. (ed.) CSOC2018 2018. AISC, vol. 764, pp. 103–110. Springer, Cham (2019). Scholar
  44. 44.
    Salas-Zárate, M.P., Valencia-García, R., Ruiz-Martínez, A., Colomo-Palacios, R.: Feature-based opinion mining in financial news: an ontology-driven approach. J. Inf. Sci. 43(4), 458–479 (2017)CrossRefGoogle Scholar
  45. 45.
    Chan, J.O.: Big data customer knowledge management. Commun. IIMA 14(3), 45–56 (2014)MathSciNetGoogle Scholar
  46. 46.
    Kupershmidt, I., et al.: Ontology-based meta-analysis of global collections of high-throughput public data. PLoS ONE 5(9), e13066 (2010)CrossRefGoogle Scholar
  47. 47.
    Bao, Q., Wang, J., Cheng, J.: Research on ontology modeling of steel manufacturing process based on big data analysis. In: MATEC Web of Conferences 45 04005 (2016)CrossRefGoogle Scholar
  48. 48.
    Bennett, M., Baclawski, K.: The role of ontologies in linked data, big data and semantic web applications. Appl. Ontol. 12(3–4), 189–194 (2017)CrossRefGoogle Scholar
  49. 49.
    Eine, B., Jurisch, M., Quint, W.: Ontology-based big data management. Systems 5(3), 45 (2017)CrossRefGoogle Scholar
  50. 50.
    Chi, E.H.: A taxonomy of visualization techniques using the data state reference model. In: Proceedings of IEEE Symposium on Information Visualization, INFOVIS 2000, pp. 69–75. IEEE Comput. Soc., Salt Lake City (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Escuela Internacional de DoctoradoUniversity of MurciaMurciaSpain
  2. 2.DIS, Faculty of Computer ScienceUniversity of MurciaMurciaSpain

Personalised recommendations