Advertisement

Framework for Fusion of Data- and Model-Based Approaches for Ultrasound Simulation

  • Christine Tanner
  • Rastislav Starkov
  • Michael Bajka
  • Orcun Goksel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11073)

Abstract

Navigation, acquisition and interpretation of ultrasound (US) images relies on the skills and expertise of the performing physician. Virtual-reality based simulations offer a safe, flexible and standardized environment to train these skills. Simulations can be data-based by displaying a-priori acquired US volumes, or ray-tracing based by simulating the complex US interactions of a geometric model. Here we combine these two approaches as it is relatively easy to gather US images of normal background anatomy and attractive to cover the range of rare findings or particular clinical tasks with known ground truth geometric models. For seamless adaption and change of US content we further require stitching, texture synthesis and tissue deformation simulations. We test the proposed hybrid simulation method by replacing embryos within gestational sacs by ray-traced embryos, and by simulating an ectoptic pregnancy.

Notes

Acknowledgment

Funding was provided by Innosuisse Swiss Innovation Agency.

References

  1. 1.
    Arkhurst, W., et al.: A virtual reality training system for pediatric sonography. Int. Congress Ser. 1230, 483–487 (2001)CrossRefGoogle Scholar
  2. 2.
    Blum, T., Rieger, A., Navab, N., Friess, H., Martignoni, M.: A review of computer-based simulators for ultrasound training. Simul. Healthcare 8, 98–108 (2013)CrossRefGoogle Scholar
  3. 3.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  4. 4.
    Bürger, B., Bettinghausen, S., Radle, M., Hesser, J.: Real-time GPU-based ultrasound simulation using deformable mesh models. IEEE Trans. Med. Imaging 32(3), 609–618 (2013)CrossRefGoogle Scholar
  5. 5.
    Efros, A., Leung, T.: Texture synthesis by non-parametric sampling. In: IEEE International Conference on Computer Vision (ICCV), pp. 1033–1038 (1999)Google Scholar
  6. 6.
    Ehricke, H.: SONOSim3D: a multimedia system for sonography simulation and education with an extensible case database. Eur. J. Ultrasound 7(3), 225–300 (1998)CrossRefGoogle Scholar
  7. 7.
    Flach, B., Makhinya, M., Goksel, O.: PURE: panoramic ultrasound reconstruction by seamless stitching of volumes. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2016. LNCS, vol. 9968, pp. 75–84. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46630-9_8CrossRefGoogle Scholar
  8. 8.
    Gao, H., et al.: A fast convolution-based methodology to simulate 2-D/3-D cardiac ultrasound images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 404–409 (2009)CrossRefGoogle Scholar
  9. 9.
    Goksel, O., Salcudean, S.E.: B-mode ultrasound image simulation in deformable 3-D medium. IEEE Trans. Med. Imaging 28(11), 1657–1669 (2009)CrossRefGoogle Scholar
  10. 10.
    Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: image and video synthesis using graph cuts. ACM Trans. Graph. (ToG). 22, 277–286 (2003)CrossRefGoogle Scholar
  11. 11.
    Loughna, P., Chitty, L., Evans, T., Chudleigh, T.: Fetal size and dating: charts recommended for clinical obstetric practice. Ultrasound 17(3), 160–166 (2009)CrossRefGoogle Scholar
  12. 12.
    Mattausch, O., Goksel, O.: Monte-Carlo ray-tracing for realistic interactive ultrasound simulation. In: Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM), pp. 1–9, Bergen, Norway, September 2016.  https://doi.org/10.2312/vcbm.20161285
  13. 13.
    Mattausch, O., Makhinya, M., Goksel, O.: Realistic ultrasound simulation of complex surface models using interactive Monte-Carlo path tracing, vol. 37, pp. 202–213 (2018)Google Scholar
  14. 14.
    Mattausch, O., Ren, E., Bajka, M., Vanhoey, K., Goksel, O.: Comparison of texture synthesis methods for content generation in ultrasound simulation for training. In: SPIE Medical Imaging, p. 1013523 (2017)Google Scholar
  15. 15.
    Maul, H., et al.: Ultrasound simulators: experience with the SonoTrainer and comparative review of other training systems. Ultrasound Obstet. Gynecol. 24(5), 581–585 (2004)CrossRefGoogle Scholar
  16. 16.
    Reichl, T., Passenger, J., Acosta, O., Salvado, O.: Ultrasound goes GPU: real-time simulation using CUDA. In: SPIE Medical Imaging, p. 726116 (2009)Google Scholar
  17. 17.
    Salehi, M., Ahmadi, S.-A., Prevost, R., Navab, N., Wein, W.: Patient-specific 3D ultrasound simulation based on convolutional ray-tracing and appearance optimization. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 510–518. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24571-3_61CrossRefGoogle Scholar
  18. 18.
    Sclaverano, S., Chevreau, G., Vadcard, L., Mozer, P., Troccaz, J.: BiopSym: a simulator for enhanced learning of ultrasound-guided prostate biopsy. Stud. Health Technol. Inform. 142, 301–306 (2009)Google Scholar
  19. 19.
    Tahmasebi, A.M., Abolmaesumi, P., Hashtrudi-Zaad, K.: A haptic-based ultrasound training/examination system (HUTES). In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3130–3131 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Christine Tanner
    • 1
  • Rastislav Starkov
    • 1
  • Michael Bajka
    • 2
  • Orcun Goksel
    • 1
  1. 1.Computer-Assisted Applications in MedicineETH ZürichZürichSwitzerland
  2. 2.Department of GynecologyUniversity Hospital of ZürichZürichSwitzerland

Personalised recommendations