Advertisement

Small Lesion Classification in Dynamic Contrast Enhancement MRI for Breast Cancer Early Detection

  • Hao Zheng
  • Yun Gu
  • Yulei Qin
  • Xiaolin Huang
  • Jie YangEmail author
  • Guang-Zhong Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11071)

Abstract

Classification of small lesions is of great importance for early detection of breast cancer. The small size of lesion makes handcrafted features ineffective for practical applications. Furthermore, the relatively small data sets also impose challenges on deep learning based classification methods. Dynamic Contrast Enhancement MRI (DCE-MRI) is widely-used for women at high risk of breast cancer, and the dynamic features become more important in the case of small lesion. To extract more dynamic information, we propose a method for processing sequence data to encode the DCE-MRI, and design a new structure, dense convolutional LSTM, by adding a dense block in convolutional LSTM unit. Faced with the huge number of parameters in deep neural network, we add some semantic priors as constrains to improve generalization performance. Four latent attributes are extracted from diagnostic reports and pathological results, and are predicted together with the classification of benign or malignant. Predicting the latent attributes as auxiliary tasks can help the training of deep neural network, which makes it possible to train complex network with small size dataset and achieve a satisfactory result. Our methods improve the accuracy from 0.625, acquired by ResNet, to 0.847.

References

  1. 1.
    Amit, G., et al.: Hybrid mass detection in breast MRI combining unsupervised saliency analysis and deep learning. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 594–602. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66179-7_68CrossRefGoogle Scholar
  2. 2.
    Antropova, N., et al.: Performance comparison of deep learning and segmentation-based radiomic methods in the task of distinguishing benign and malignant breast lesions on DCE-MRI. In: Medical Imaging 2017: Computer-Aided Diagnosis, 101341G (2017)Google Scholar
  3. 3.
    Bickel, H., et al.: Diffusion-weighted imaging of breast lesions: region-of-interest placement and different ADC parameters influence apparent diffusion coefficient values. Eur Radiol. 27(5), 1883–1892 (2017)CrossRefGoogle Scholar
  4. 4.
    Dai, L., et al.: Retinal microaneurysm detection using clinical report guided multi-sieving CNN. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 525–532. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66179-7_60CrossRefGoogle Scholar
  5. 5.
    Fusco, R., et al.: Pattern recognition approaches for breast cancer DCE-MRI classification: a systematic review. JMBE 36, 449–459 (2016)Google Scholar
  6. 6.
    He, K., et al.: Deep residual learning for image recognition. In: CVPR (2016)Google Scholar
  7. 7.
    Huang, G., et al.: Densely connected convolutional networks. In: CVPR (2017)Google Scholar
  8. 8.
    Maicas, G., Carneiro, G., Bradley, A.P., Nascimento, J.C., Reid, I.: Deep reinforcement learning for active breast lesion detection from DCE-MRI. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 665–673. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66179-7_76CrossRefGoogle Scholar
  9. 9.
    Peters, N.: Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology 246(1), 116–124 (2008)CrossRefGoogle Scholar
  10. 10.
    Shi, X., et al.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: NIPS (2015)Google Scholar
  11. 11.
    Woitek, R.: A simple classification system (the Tree flowchart) for breast MRI can reduce the number of unnecessary biopsies in MRI-only lesions. Eur Radiol. 27(9), 3799–3809 (2017)CrossRefGoogle Scholar
  12. 12.
    Zhang, Z., Chen, P., Sapkota, M., Yang, L.: TandemNet: distilling knowledge from medical images using diagnostic reports as optional semantic references. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 320–328. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66179-7_37CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Hao Zheng
    • 1
    • 2
  • Yun Gu
    • 1
    • 2
    • 3
  • Yulei Qin
    • 1
    • 2
  • Xiaolin Huang
    • 1
    • 2
  • Jie Yang
    • 1
    • 2
    Email author
  • Guang-Zhong Yang
    • 3
  1. 1.Institute of Image Processing and Pattern RecognitionShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Medical Robotics InstituteShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Hamlyn Centre for Robotic Surgery, Imperial College LondonLondonUK

Personalised recommendations