Advertisement

Conditional Generative Adversarial and Convolutional Networks for X-ray Breast Mass Segmentation and Shape Classification

  • Vivek Kumar SinghEmail author
  • Santiago Romani
  • Hatem A. Rashwan
  • Farhan Akram
  • Nidhi Pandey
  • Md. Mostafa Kamal Sarker
  • Saddam Abdulwahab
  • Jordina Torrents-Barrena
  • Adel Saleh
  • Miguel Arquez
  • Meritxell Arenas
  • Domenec Puig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11071)

Abstract

This paper proposes a novel approach based on conditional Generative Adversarial Networks (cGAN) for breast mass segmentation in mammography. We hypothesized that the cGAN structure is well-suited to accurately outline the mass area, especially when the training data is limited. The generative network learns intrinsic features of tumors while the adversarial network enforces segmentations to be similar to the ground truth. Experiments performed on dozens of malignant tumors extracted from the public DDSM dataset and from our in-house private dataset confirm our hypothesis with very high Dice coefficient and Jaccard index (>94% and >89%, respectively) outperforming the scores obtained by other state-of-the-art approaches. Furthermore, in order to detect portray significant morphological features of the segmented tumor, a specific Convolutional Neural Network (CNN) have also been designed for classifying the segmented tumor areas into four types (irregular, lobular, oval and round), which provides an overall accuracy about 72% with the DDSM dataset.

Keywords

cGAN CNN Mammography Mass segmentation Mass shape classification 

Notes

Acknowledgement

This research has been partly supported by the Spanish Government through project DPI2016-77415-R.

References

  1. 1.
    Cheng, H., Shi, X., Min, R., Hu, L., Cai, X., Du, H.N.: Approaches for automated detection and classification of masses in mammograms. Pattern Recognit. 39(4), 646–668 (2006)CrossRefGoogle Scholar
  2. 2.
    Kopans, D.: Breast Imaging. Lippincott, New York (1998)Google Scholar
  3. 3.
    Elmore, J.G., et al.: Variability in interpretive performance at screening mammography and radiologists’ characteristics associated with accuracy. Radiology 253(3), 641–651 (2009)CrossRefGoogle Scholar
  4. 4.
    Cho, N.: Molecular subtypes and imaging phenotypes of breast cancer. Ultrasonography 35(4), 281 (2016)CrossRefGoogle Scholar
  5. 5.
    Liu, S., Wu, X.D., Xu, W.J., Lin, Q., Liu, X.J., Li, Y.: Is there a correlation between the presence of a spiculated mass on mammogram and luminal a subtype breast cancer? Korean J. Radiol. 17(6), 846–852 (2016)CrossRefGoogle Scholar
  6. 6.
    Tamaki, K., et al.: Correlation between mammographic findings and corresponding histopathology: potential predictors for biological characteristics of breast diseases. Cancer Sci. 102(12), 2179–2185 (2011)CrossRefGoogle Scholar
  7. 7.
    Singh, V.K., et al.: Classification of breast cancer molecular subtypes from their micro-texture in mammograms using a VGGNet-based convolutional neural network. In: Recent Advances in Artificial Intelligence Research and Development - Proceedings of the 20th International Conference of the Catalan Association for Artificial Intelligence, pp. 76–85 (2017)Google Scholar
  8. 8.
    Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint (2017)Google Scholar
  9. 9.
    Oliver, A., et al.: A review of automatic mass detection and segmentation in mammographic images. Med. Image Anal. 14(2), 87–110 (2010)CrossRefGoogle Scholar
  10. 10.
    Dhungel, N., Carneiro, G., Bradley, A.P.: Deep learning and structured prediction for the segmentation of mass in mammograms. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 605–612. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24553-9_74CrossRefGoogle Scholar
  11. 11.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  12. 12.
    Zhu, W., Xie, X.: Adversarial deep structural networks for mammographic mass segmentation. arXiv preprint arXiv:1612.05970 (2016)
  13. 13.
    Yang, D., et al.: Automatic liver segmentation using an adversarial image-to-image network. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 507–515. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66179-7_58CrossRefGoogle Scholar
  14. 14.
    Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRefGoogle Scholar
  15. 15.
    Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, P.: The digital database for screening mammography. In: Digital Mammography, pp. 431–434 (2000)Google Scholar
  16. 16.
    Vacavant, A., Chateau, T., Wilhelm, A., Lequièvre, L.: A benchmark dataset for outdoor foreground/background extraction. In: Park, J.-I., Kim, J. (eds.) ACCV 2012. LNCS, vol. 7728, pp. 291–300. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37410-4_25CrossRefGoogle Scholar
  17. 17.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  18. 18.
    Zhang, L., et al.: Identifying ultrasound and clinical features of breast cancer molecular subtypes by ensemble decision. Sci. Rep. 5, 11085 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Vivek Kumar Singh
    • 1
    Email author
  • Santiago Romani
    • 1
  • Hatem A. Rashwan
    • 1
  • Farhan Akram
    • 2
  • Nidhi Pandey
    • 3
    • 4
  • Md. Mostafa Kamal Sarker
    • 1
  • Saddam Abdulwahab
    • 1
  • Jordina Torrents-Barrena
    • 1
  • Adel Saleh
    • 1
  • Miguel Arquez
    • 4
  • Meritxell Arenas
    • 4
  • Domenec Puig
    • 1
  1. 1.DEIMUniversitat Rovira i VirgiliTarragonaSpain
  2. 2.Imaging Informatics DivisionBioinformatics InstituteSingaporeSingapore
  3. 3.Kayakalp HospitalNew DelhiIndia
  4. 4.Hospital Universitari Sant Joan de ReusTarragonaSpain

Personalised recommendations