Advertisement

A Framework for Identifying Diabetic Retinopathy Based on Anti-noise Detection and Attention-Based Fusion

  • Zhiwen Lin
  • Ruoqian Guo
  • Yanjie Wang
  • Bian Wu
  • Tingting Chen
  • Wenzhe Wang
  • Danny Z. Chen
  • Jian WuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11071)

Abstract

Automatic diagnosis of diabetic retinopathy (DR) using retinal fundus images is a challenging problem because images of low grade DR may contain only a few tiny lesions which are difficult to perceive even to human experts. Using annotations in the form of lesion bounding boxes may help solve the problem by deep learning models, but fully annotated samples of this type are usually expensive to obtain. Missing annotated samples (i.e., true lesions but not included in annotations) are noise and can affect learning models negatively. Besides, how to utilize lesion information for identifying DR should be considered carefully because different types of lesions may be used to distinguish different DR grades. In this paper, we propose a new framework for unifying lesion detection and DR identification. Our lesion detection model first determines the missing annotated samples to reduce their impact on the model, and extracts lesion information. Our attention-based network then fuses original images and lesion information to identify DR. Experimental results show that our detection model can considerably reduce the impact of missing annotation and our attention-based network can learn weights between the original images and lesion information for distinguishing different DR grades. Our approach outperforms state-of-the-art methods on two grand challenge retina datasets, EyePACS and Messidor.

Notes

Acknowledgement

D.Z. Chen’s research was supported in part by NSF Grant CCF-1617735. The authors would like to thank the RealDoctor AI Research Center.

References

  1. 1.
    Chen, L.C., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: Scale-aware semantic image segmentation. In: CVPR, pp. 3640–3649 (2016)Google Scholar
  2. 2.
    Dai, L., et al.: Retinal microaneurysm detection using clinical report guided multi-sieving CNN. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 525–532. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66179-7_60CrossRefGoogle Scholar
  3. 3.
    Gargeya, R., Leng, T.: Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7), 962–969 (2017)CrossRefGoogle Scholar
  4. 4.
    van Grinsven, M.J.J.P., van Ginneken, B., Hoyng, C.B., Theelen, T., Sanchez, C.I.: Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans. Med. Imaging 35(5), 1273–1284 (2016)CrossRefGoogle Scholar
  5. 5.
    Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402 (2016)CrossRefGoogle Scholar
  6. 6.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2015)Google Scholar
  7. 7.
    Kumar, N., Rajwade, A.V., Chandran, S., Awate, S.P.: Kernel generalized-gaussian mixture model for robust abnormality detection. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 21–29. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66179-7_3CrossRefGoogle Scholar
  8. 8.
    Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46448-0_2CrossRefGoogle Scholar
  9. 9.
    Seoud, L., Hurtut, T., Chelbi, J., Cheriet, F., Langlois, J.M.P.: Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Trans. Med. Imaging 35(4), 1116–1126 (2015)CrossRefGoogle Scholar
  10. 10.
    Sánchez, C.I., Niemeijer, M., Dumitrescu, A.V., Suttorpschulten, M.S., Abràmoff, M.D., Van, G.B.: Evaluation of a computer-aided diagnosis system for diabetic retinopathy screening on public data. IOVS 52(7), 4866 (2011)Google Scholar
  11. 11.
    Wang, Z., Yin, Y., Shi, J., Fang, W., Li, H., Wang, X.: Zoom-in-net: deep mining lesions for diabetic retinopathy detection. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 267–275. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66179-7_31CrossRefGoogle Scholar
  12. 12.
    Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46478-7_31CrossRefGoogle Scholar
  13. 13.
    Yang, Y., Li, T., Li, W., Wu, H., Fan, W., Zhang, W.: Lesion detection and grading of diabetic retinopathy via two-stages deep convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 533–540. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66179-7_61CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Zhiwen Lin
    • 1
  • Ruoqian Guo
    • 1
  • Yanjie Wang
    • 1
  • Bian Wu
    • 2
  • Tingting Chen
    • 1
  • Wenzhe Wang
    • 1
  • Danny Z. Chen
    • 3
  • Jian Wu
    • 1
    Email author
  1. 1.College of Computer Science and TechnologyZhejiang UniversityHangzhouChina
  2. 2.Data Science and AI LabWeDoctor Group LimitedHangzhouChina
  3. 3.Department of Computer Science and EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations