Advertisement

Vascular Network Organization via Hough Transform (VaNgOGH): A Novel Radiomic Biomarker for Diagnosis and Treatment Response

  • Nathaniel Braman
  • Prateek Prasanna
  • Mehdi Alilou
  • Niha Beig
  • Anant Madabhushi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11071)

Abstract

As a “hallmark of cancer”, tumor-induced angiogenesis is one of the most important mechanisms of a tumor’s adaptation to changes in nutrient requirement. The angiogenic activity of certain tumors has been found to be predictive of a patient’s ultimate response to therapeutic intervention. This then begs the question if there are differences in vessel arrangement and corresponding convolutedness, between tumors that appear phenotypically similar, but respond differently to treatment. Even though textural radiomics and deep learning-based approaches have been shown to distinguish disease aggressiveness and assess therapeutic response, these descriptors do not specifically interpret differences in vessel characteristics. Moreover, most existing approaches have attempted to model disease characteristics just within tumor confines, or right outside, but do not consider explicit parenchymal vessel morphology. In this work, we introduce VaNgOGH (Vascular Network Organization via Hough transform), a new descriptor of architectural disorder of the tumor’s vascular network. We demonstrate the efficacy of VaNgOGH in two clinically challenging problems: (a) Predicting pathologically complete response (pCR) in breast cancer prior to treatment (BCa, N = 76) and (b) distinguishing benign nodules from malignant non-small cell lung cancer (LCa, N = 81). For both tasks, VaNgOGH had test area under the receiver operating characteristic curve (\(AUC_{BCa}\) = 0.75, \(AUC_{LCa}\) = 0.68) higher than, or comparable to, state of the art radiomic approaches (\(AUC_{BCa}\) = 0.75, \(AUC_{LCa}\) = 0.62) and convolutional neural networks (\(AUC_{BCa}\) = 0.67, \(AUC_{LCa}\) = 0.66). Interestingly, when a known radiomic signature was used in conjunction with VaNgOGH, \(AUC_{BCa}\) increased to 0.79.

References

  1. 1.
    Yamazaki, K., et al.: Tumor angiogenesis in human lung adenocarcinoma. Cancer 74, 2245–2250 (1994)CrossRefGoogle Scholar
  2. 2.
    Grunewald, M., et al.: VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124, 175–189 (2006)CrossRefGoogle Scholar
  3. 3.
    Bullitt, E., et al.: Tumor therapeutic response and vessel tortuosity: preliminary report in metastatic breast cancer. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 561–568. Springer, Heidelberg (2006).  https://doi.org/10.1007/11866763_69CrossRefGoogle Scholar
  4. 4.
    Aerts, H.J.W.L., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014)CrossRefGoogle Scholar
  5. 5.
    Li, H., et al.: Quantitative MRI radiomics in the prediction of molecular classifications of BCA subtypes in the TCGA/TCIA data set. NPJ Breast Cancer 2, 16012 (2016)CrossRefGoogle Scholar
  6. 6.
    Braman, N.M., et al.: Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res. 19, 57 (2017)CrossRefGoogle Scholar
  7. 7.
    Zheng, Y., et al.: Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment. Med Phys. 42, 4149–4160 (2015)CrossRefGoogle Scholar
  8. 8.
    Prasanna, P., Tiwari, P., Madabhushi, A.: Co-occurrence of local anisotropic gradient orientations (CoLlAGe): distinguishing tumor confounders and molecular subtypes on MRI. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 73–80. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10443-0_10CrossRefGoogle Scholar
  9. 9.
    LeCun, Y., et al.: Gradient-based learning applied to document recognition. IEEE 86, 2278–2324 (1998)CrossRefGoogle Scholar
  10. 10.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0056195CrossRefGoogle Scholar
  11. 11.
    Hu, S., et al.: Automatic lung segmentation for accurate quantitation of volumetric x-ray CT. IEEE TMI 20, 490–498 (2001)Google Scholar
  12. 12.
    Adams, R., et al.: Seeded region growing. IEEE PAMI 16, 641–647 (1994)CrossRefGoogle Scholar
  13. 13.
    Sethian, J.A.: Fast marching methods. SIAM Rev. 41, 199–235 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Nathaniel Braman
    • 1
  • Prateek Prasanna
    • 1
  • Mehdi Alilou
    • 1
  • Niha Beig
    • 1
  • Anant Madabhushi
    • 1
  1. 1.Department of Biomedical EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations