From Local to Global: A Holistic Lung Graph Model

  • Yashin Dicente CidEmail author
  • Oscar Jiménez-del-Toro
  • Alexandra Platon
  • Henning Müller
  • Pierre-Alexandre Poletti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11071)


Lung image analysis is an essential part in the assessment of pulmonary diseases. Through visual inspection of CT scans, radiologists detect abnormal patterns in the lung parenchyma, aiming to establish a timely diagnosis and thus improving patient outcome. However, in a generalized disorder of the lungs, such as pulmonary hypertension, the changes in organ tissue can be elusive, requiring additional invasive studies to confirm the diagnosis. We present a graph model that quantifies lung texture in a holistic approach enhancing the analysis between pathologies with similar local changes. The approach extracts local state-of-the-art 3D texture descriptors from an automatically generated geometric parcellation of the lungs. The global texture distribution is encoded in a weighted graph that characterizes the correlations among neighboring organ regions. A data set of 125 patients with suspicion of having a pulmonary vascular pathology was used to evaluate our method. Three classes containing 47 pulmonary hypertension, 31 pulmonary embolism and 47 control cases were classified in a one vs. one setup. An area under the curve of up to 0.85 was obtained adding directionality to the edges of the graph architecture. The approach was able to identify diseased patients, and to distinguish pathologies with abnormal local and global blood perfusion defects.


Lung graph model Texture analysis Pulmonary perfusion 



This work was partly supported by the Swiss National Science Foundation in the PH4D project (grant agreement 320030-146804).


  1. 1.
    Chalkidou, A., O’Doherty, M.J., Marsden, P.K.: False discovery rates in PET and CT Studies with texture features: a systematic review. PLOS ONE 10(5), 1–18 (2015)CrossRefGoogle Scholar
  2. 2.
    Depeursinge, A., Al-Kadi, O.S., Mitchell, J.R.: Biomedical Texture Analysis: Fundamentals, Applications and Tools. Elsevier-MICCAI Society Book series. Elsevier, October 2017.
  3. 3.
    Depeursinge, A., Zrimec, T., Busayarat, S., Müller, H.: 3D lung image retrieval using localized features. In: Medical Imaging 2011: Computer-Aided Diagnosis, vol. 7963, p. 79632E. SPIE, February 2011Google Scholar
  4. 4.
    Dicente Cid, Y., Batmanghelich, K., Müller, H.: Textured graph-model of the lungs for tuberculosis type classification and drug resistance prediction: participation in ImageCLEF 2017. In: CLEF2017 Working Notes. CEUR Workshop Proceedings,, Dublin, Ireland, 11–14 September 2017 (2017).
  5. 5.
    Dicente Cid, Y., Depeursinge, A., Foncubierta-Rodríguez, Platon, A., Poletti, P.A., Müller, H.: Pulmonary embolism detection using localized vessel-based features in dual energy CT. In: SPIE Medical Imaging. International Society for Optics and Photonics (2015)Google Scholar
  6. 6.
    Dicente Cid, Y., Jimenez-del-Toro, O., Depeursinge, A., Müller, H.: Efficient and fully automatic segmentation of the lungs in CT volumes. In: Goksel, O., Jimenez-del-Toro, O., Foncubierta-Rodriguez, A., Müller, H. (eds.) Proceedings of the VISCERAL Challenge at ISBI, pp. 31–35. No. 1390 in CEUR Workshop Proceedings, April 2015Google Scholar
  7. 7.
    Dicente Cid, Y., Kalinovsky, A., Liauchuk, V., Kovalev, V., Müller, H.: Overview of ImageCLEFtuberculosis 2017 - predicting tuberculosis type and drug resistances. In: CLEF 2017 Labs Working Notes. CEUR Workshop Proceedings,, Dublin, Ireland, 11–14 September 2017 (2017).
  8. 8.
    Dicente Cid, Y., et al.: A lung graph–model for pulmonary hypertension and pulmonary embolism detection on DECT images. In: Müller, H. (ed.) MCV/BAMBI -2016. LNCS, vol. 10081, pp. 58–68. Springer, Cham (2017). Scholar
  9. 9.
    Dicente Cid, Y., Müller, H., Platon, A., Poletti, P.A., Depeursinge, A.: 3-D solid texture classification using locally-oriented wavelet transforms. IEEE Trans. Image Process. 26(4), 1899–1910 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Farber, H.: Pulmonary circulation: diseases and their treatment. Eur. Respir. Rev. 21(123), 78 (2012). 3rd editionGoogle Scholar
  11. 11.
    Galiè, N., et al.: Treatment of patients with mildly symptomatic pulmonary arterial hypertension with bosentan (early study): a double-blind, randomised controlled trial. Lancet 371(9630), 2093–2100 (2008)CrossRefGoogle Scholar
  12. 12.
    Lador, F., Herve, P.: A practical approach of pulmonary hypertension in the elderly. Semin. Respir. Crit. Care Med. 34(5), 654–664 (2013)CrossRefGoogle Scholar
  13. 13.
    Liu, K., et al.: Rotation-invariant hog descriptors using fourier analysis in polar and spherical coordinates. Int. J. Comput. Vis. 106(3), 342–364 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Richiardi, J., Bunke, H., Van De Ville, D., Achard, S.: Machine learning with brain graphs. IEEE Signal Process. Mag. 30, 58 (2013)CrossRefGoogle Scholar
  15. 15.
    Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P., Van De Ville, D.: Decoding brain states from fMRI connectivity graphs. NeuroImage 56(2), 616–626 (2011)CrossRefGoogle Scholar
  16. 16.
    Tuder, R.M.: Relevant issues in the pathology and pathobiology of pulmonary hypertension. J. Am. Coll. Cardiol. 62(25 SUPPL.), D4–D12 (2013)CrossRefGoogle Scholar
  17. 17.
    Zrimec, T., Busayarat, S., Wilson, P.: A 3D model of the human lung with lung regions characterization. In: ICIP 2004 Proceedings of the IEEE International Conference on Image Processing, vol. 2, pp. 1149–1152 (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yashin Dicente Cid
    • 1
    • 2
    Email author
  • Oscar Jiménez-del-Toro
    • 1
    • 2
    • 3
  • Alexandra Platon
    • 3
  • Henning Müller
    • 1
    • 2
  • Pierre-Alexandre Poletti
    • 3
  1. 1.University of Applied Sciences Western Switzerland (HES-SO)SierreSwitzerland
  2. 2.University of GenevaGenevaSwitzerland
  3. 3.University Hospitals of Geneva (HUG)GenevaSwitzerland

Personalised recommendations