Advertisement

Noninvasive Determination of Gene Mutations in Clear Cell Renal Cell Carcinoma Using Multiple Instance Decisions Aggregated CNN

  • Mohammad Arafat Hussain
  • Ghassan Hamarneh
  • Rafeef Garbi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11071)

Abstract

Kidney clear cell renal cell carcinoma (ccRCC) is the major sub-type of RCC, constituting one the most common cancers worldwide accounting for a steadily increasing mortality rate with 350,000 new cases recorded in 2012. Understanding the underlying genetic mutations in ccRCC provides crucial information enabling malignancy staging and patient survival estimation thus plays a vital role in accurate ccRCC diagnosis, prognosis, treatment planning, and response assessment. Although the underlying gene mutations can be identified by whole genome sequencing of the ccRCC following invasive nephrectomy or kidney biopsy procedures, recent studies have suggested that such mutations may be noninvasively identified by studying image features of the ccRCC from Computed Tomography (CT) data. Such image feature identification currently relies on laborious manual processes based on visual inspection of 2D image slices that are time-consuming and subjective. In this paper, we propose a convolutional neural network approach for automatic detection of underlying ccRCC gene mutations from 3D CT volumes. We aggregate the mutation-presence/absence decisions for all the ccRCC slices in a kidney into a robust singular decision that determines whether the interrogated kidney bears a specific mutation or not. When validated on clinical CT datasets of 267 patients from the TCIA database, our method detected gene mutations with 94% accuracy.

References

  1. 1.
    Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2015. CA Cancer J. Clin. 65(1), 5–29 (2015)CrossRefGoogle Scholar
  2. 2.
    Ridge, C.A., Pua, B.B., Madoff, D.C.: Epidemiology and staging of renal cell carcinoma. Semin. Interv. Radiol. 31, 3–8 (2014)CrossRefGoogle Scholar
  3. 3.
    Lam, J.S., Shvarts, O., Leppert, J.T., Figlin, R.A., Belldegrun, A.S.: Renal cell carcinoma 2005: new frontiers in staging, prognostication and targeted molecular therapy. J. Urol. 173(6), 1853–1862 (2005)CrossRefGoogle Scholar
  4. 4.
    Shinagare, A.B., Vikram, R., Jaffe, C., Akin, O., Kirby, J.: Radiogenomics of clear cell renal cell carcinoma: preliminary findings of the cancer genome atlas-renal cell carcinoma (TCGA-RCC) imaging research group. Abdom. Imaging 40(6), 1684–1692 (2015)CrossRefGoogle Scholar
  5. 5.
    The Cancer Genome Atlas Research Network: Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499(7456), 43 (2013)Google Scholar
  6. 6.
    Guo, G., et al.: Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat. Genet. 44(1), 17 (2012)CrossRefGoogle Scholar
  7. 7.
    Gao, J., et al.: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6(269) pl1 (2013)CrossRefGoogle Scholar
  8. 8.
    Karlo, C.A., Di Paolo, P.L., Chaim, J., Hakimi, A.A.: Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology 270(2), 464–471 (2014)CrossRefGoogle Scholar
  9. 9.
    Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2015)CrossRefGoogle Scholar
  10. 10.
    Aerts, H.J.: The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2(12), 1636–1642 (2016)CrossRefGoogle Scholar
  11. 11.
    Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1–2), 31–71 (1997)CrossRefGoogle Scholar
  12. 12.
    Clark, K.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)CrossRefGoogle Scholar
  13. 13.
    Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10590-1_53CrossRefGoogle Scholar
  14. 14.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  15. 15.
    Wang, H., Moradi, M., Gur, Y., Prasanna, P., Syeda-Mahmood, T.: A multi-atlas approach to region of interest detection for medical image classification. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 168–176. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66179-7_20CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mohammad Arafat Hussain
    • 1
  • Ghassan Hamarneh
    • 2
  • Rafeef Garbi
    • 1
  1. 1.BiSICLUniversity of British ColumbiaVancouverCanada
  2. 2.Medical Image Analysis LabSimon Fraser UniversityBurnabyCanada

Personalised recommendations