Advertisement

Quasi-automatic Colon Segmentation on T2-MRI Images with Low User Effort

  • B. Orellana
  • E. Monclús
  • P. Brunet
  • I. Navazo
  • Á. Bendezú
  • F. Azpiroz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11071)

Abstract

About 50% of the patients consulting a gastroenterology clinic report symptoms without detectable cause. Clinical researchers are interested in analyzing the volumetric evolution of colon segments under the effect of different diets and diseases. These studies require non-invasive abdominal MRI scans without using any contrast agent. In this work, we propose a colon segmentation framework designed to support T2-weighted abdominal MRI scans obtained from an unprepared colon. The segmentation process is based on an efficient and accurate quasi-automatic approach that drastically reduces the specialist interaction and effort with respect other state-of-the-art solutions, while decreasing the overall segmentation cost. The algorithm relies on a novel probabilistic tubularity filter, the detection of the colon medial line, probabilistic information extracted from a training set and a final unsupervised clustering. Experimental results presented show the benefits of our approach for clinical use.

References

  1. 1.
    Pritchard, S.E., et al.: Fasting and postprandial volumes of the undisturbed colon: normal values and changes in diarrhea-predominant irritable bowel syndrome measured using serial mri. Neurogastroenterol. Motil. 26(1), 124–130 (2014)CrossRefGoogle Scholar
  2. 2.
    Bendezú, R., et al.: Colonic content: effect of diet, meals, and defecation. Neurogastroenterol. Motil. 29(2) (2017)CrossRefGoogle Scholar
  3. 3.
    Sandberg, T.H., et al.: A novel semi-automatic segmentation method for volumetric assessment of the colon based on magnetic resonance imaging. Abdom. Imaging 40(7), 2232–2241 (2015)CrossRefGoogle Scholar
  4. 4.
    Mahapatra, D., et al.: Automatic detection and segmentation of crohn’s disease tissues from abdominal MRI. IEEE Trans. Med. Imaging 32(12), 2332–2347 (2013)CrossRefGoogle Scholar
  5. 5.
    Yigitsoy, M., Reiser, M.F., Navab, N., Kirchhoff, S.: Dynamic graph cuts for colon segmentation in functional cine-MRI. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1268–1271. IEEE (2012)Google Scholar
  6. 6.
    Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model-based detection of tubular structures in 3D images. Comput. Vis. Image Underst. 80(2), 130–171 (2000)CrossRefGoogle Scholar
  7. 7.
    Smistad, E., Brekken, R., Lindseth, F.: A new tube detection filter for abdominal aortic aneurysms. In: Yoshida, H., Näppi, J., Saini, S. (eds.) International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging, pp. 229–238. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13692-9_22CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • B. Orellana
    • 1
  • E. Monclús
    • 1
  • P. Brunet
    • 1
  • I. Navazo
    • 1
  • Á. Bendezú
    • 2
  • F. Azpiroz
    • 3
  1. 1.ViRVIG GroupUPC-BarcelonaTechBarcelonaSpain
  2. 2.Digestive DepartmentHospital General de CatalunyaBarcelonaSpain
  3. 3.Digestive System Research UnitUniversity Hospital Vall d’HebronBarcelonaSpain

Personalised recommendations