Advertisement

Efficient Active Learning for Image Classification and Segmentation Using a Sample Selection and Conditional Generative Adversarial Network

  • Dwarikanath MahapatraEmail author
  • Behzad Bozorgtabar
  • Jean-Philippe Thiran
  • Mauricio Reyes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11071)

Abstract

Training robust deep learning (DL) systems for medical image classification or segmentation is challenging due to limited images covering different disease types and severity. We propose an active learning (AL) framework to select most informative samples and add to the training data. We use conditional generative adversarial networks (cGANs) to generate realistic chest xray images with different disease characteristics by conditioning its generation on a real image sample. Informative samples to add to the training set are identified using a Bayesian neural network. Experiments show our proposed AL framework is able to achieve state of the art performance by using about \(35\%\) of the full dataset, thus saving significant time and effort over conventional methods.

Notes

Acknowledgement

The authors acknowledge the support from SNSF project grant number 169607.

References

  1. 1.
    Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: Proceedings of the International Conference on Machine Learning (2017)Google Scholar
  2. 2.
    van Ginneken, B., Stegmann, M., Loog, M.: Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med. Image Anal. 10(1), 19–40 (2006)CrossRefGoogle Scholar
  3. 3.
    Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of the NIPS, pp. 2672–2680 (2014)Google Scholar
  4. 4.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the CVPR (2016)Google Scholar
  5. 5.
    Isola, P., Zhu, J., Zhou, T., Efros, A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)Google Scholar
  6. 6.
    Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems (2017)Google Scholar
  7. 7.
    Li, X., Guo, Y.: Adaptive active learning for image classification. In: Proceedings of the CVPR (2013)Google Scholar
  8. 8.
    Mahapatra, D., Bozorgtabar, B., Hewavitharanage, S., Garnavi, R.: Image super resolution using generative adversarial networks and local saliency maps for retinal image analysis. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 382–390. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66179-7_44CrossRefGoogle Scholar
  9. 9.
    Mahapatra, D., Schüffler, P.J., Tielbeek, J.A.W., Vos, F.M., Buhmann, J.M.: Semi-supervised and active learning for automatic segmentation of Crohn’s disease. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 214–221. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40763-5_27CrossRefGoogle Scholar
  10. 10.
    Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.: Context encoders: feature learning by inpainting. In: Proceedings of the CVPR, pp. 2536–2544 (2016)Google Scholar
  11. 11.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  12. 12.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)Google Scholar
  13. 13.
    Tajbakhsh, N., et al.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)CrossRefGoogle Scholar
  14. 14.
    Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. CSVT 27(12), 2591–2600 (2017)Google Scholar
  15. 15.
    Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.: Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the CVPR (2017)Google Scholar
  16. 16.
    Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 399–407. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66179-7_46CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Dwarikanath Mahapatra
    • 1
    Email author
  • Behzad Bozorgtabar
    • 2
  • Jean-Philippe Thiran
    • 2
  • Mauricio Reyes
    • 3
  1. 1.IBM Research AustraliaMelbourneAustralia
  2. 2.Ecole Polytechnique Federale de LausanneLausanneSwitzerland
  3. 3.University of BernBernSwitzerland

Personalised recommendations