Advertisement

Evaluation of Collimation Prediction Based on Depth Images and Automated Landmark Detection for Routine Clinical Chest X-Ray Exams

  • Julien SénégasEmail author
  • Axel Saalbach
  • Martin Bergtholdt
  • Sascha Jockel
  • Detlef Mentrup
  • Roman Fischbach
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11071)

Abstract

The aim of this study was to evaluate the performance of a machine learning algorithm applied to depth images for the automated computation of X-ray beam collimation parameters in radiographic chest examinations including posterior-anterior (PA) and left-lateral (LAT) views. Our approach used as intermediate step a trained classifier for the detection of internal lung landmarks that were defined on X-ray images acquired simultaneously with the depth image. The landmark detection algorithm was evaluated retrospectively in a 5-fold cross validation experiment on the basis of 89 patient data sets acquired in clinical settings. Two auto-collimation algorithms were devised and their results were compared to the reference lung bounding boxes defined on the X-ray images and to the manual collimation parameters set by the radiologic technologists.

Keywords

Boosted tree classifiers Gentle AdaBoost Anatomical landmarks Detection Constellation model Multivariate regression X-ray beam collimation 

References

  1. 1.
    Recommendation of the International Commission on Radiological Protection. IRCP Publication 26, Pergamon Press, Oxford (1977)Google Scholar
  2. 2.
    Foos, D.H., Sehnert, W.J., Reiner, B., Siegel, E.L., Segal, A., Waldman, D.L.: Digital radiography reject analysis: data collection methodology, results, and recommendations from an in-depth investigation at two hospitals. J. Digit. Imaging 22(1), 89–98 (2009)CrossRefGoogle Scholar
  3. 3.
    Hofmann, B., Rosanowsky, T.B., Jensen, C., Wah, K.H.: Image rejects in general direct digital radiography. Acta. Radiol. Open 4 (2015). https://doi.org/10.1177/2058460115604339CrossRefGoogle Scholar
  4. 4.
    Jones, A.K., Polman, R., Willis, C.E., Shepard, S.J.: One year’s results from a server-based system for performing reject analysis and exposure analysis in computed radiography. J. Digit. Imaging 24(2), 243–255 (2011)CrossRefGoogle Scholar
  5. 5.
    Little, K.J., et al.: Unified database for rejected image analysis across multiple vendors in radiography. J Am Coll Radiol 14(2), 208–216 (2016)CrossRefGoogle Scholar
  6. 6.
    Brahme, A., Nyman, P., Skatt, B.: 4D laser camera for accurate patient positioning, collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedures. Med. Phys. 35(5), 1670–1681 (2008)CrossRefGoogle Scholar
  7. 7.
    Grimm, R., Bauer, S., Sukkau, J., Hornegger, J., Greiner, G.: Markerless estimation of patient orientation, posture and pose using range and pressure imaging for automatic patient setup and scanner initialization in tomographic imaging. Int. J. Comput. Assist. Radiol. Surg. 7(6), 921–929 (2012)CrossRefGoogle Scholar
  8. 8.
    Singh, V., et al.: DARWIN: deformable patient avatar representation with deep image network. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 497–504. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66185-8_56CrossRefGoogle Scholar
  9. 9.
    MacDougall, R., Scherrer, B., Don, S.: Development of a tool to aid the radiologic technologist using augmented reality and computer vision. Pediatr. Radiol. 48(1), 141–145 (2018)CrossRefGoogle Scholar
  10. 10.
    Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: IEEE International Conference on Robotics and Automation, vol. 3, pp. 2724–2729 (1991)Google Scholar
  11. 11.
    Shotton, J., et al.: Efficient human pose estimation from single depth images. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821–2840 (2013)CrossRefGoogle Scholar
  12. 12.
    Pham, T., Smeulders, A.: Object recognition with uncertain geometry and uncertain part detection. Comput. Vis. Image Underst. 99(2), 241–258 (2005)CrossRefGoogle Scholar
  13. 13.
    Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics. Springer, New York (2001)zbMATHGoogle Scholar
  14. 14.
    Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Julien Sénégas
    • 1
    Email author
  • Axel Saalbach
    • 1
  • Martin Bergtholdt
    • 1
  • Sascha Jockel
    • 2
  • Detlef Mentrup
    • 2
  • Roman Fischbach
    • 3
  1. 1.Philips ResearchHamburgGermany
  2. 2.Philips Medical SystemsHamburgGermany
  3. 3.Asklepios Klinik AltonaHamburgGermany

Personalised recommendations