Advertisement

High-Dimensional Bayesian Optimization of Personalized Cardiac Model Parameters via an Embedded Generative Model

  • Jwala DhamalaEmail author
  • Sandesh Ghimire
  • John L. Sapp
  • B. Milan Horáček
  • Linwei Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11071)

Abstract

The estimation of patient-specific tissue properties in the form of model parameters is important for personalized physiological models. However, these tissue properties are spatially varying across the underlying anatomical model, presenting a significance challenge of high-dimensional (HD) optimization at the presence of limited measurement data. A common solution to reduce the dimension of the parameter space is to explicitly partition the anatomical mesh, either into a fixed small number of segments or a multi-scale hierarchy. This anatomy-based reduction of parameter space presents a fundamental bottleneck to parameter estimation, resulting in solutions that are either too low in resolution to reflect tissue heterogeneity, or too high in dimension to be reliably estimated within feasible computation. In this paper, we present a novel concept that embeds a generative variational auto-encoder (VAE) into the objective function of Bayesian optimization, providing an implicit low-dimensional (LD) search space that represents the generative code of the HD spatially-varying tissue properties. In addition, the VAE-encoded knowledge about the generative code is further used to guide the exploration of the search space. The presented method is applied to estimating tissue excitability in a cardiac electrophysiological model. Synthetic and real-data experiments demonstrate its ability to improve the accuracy of parameter estimation with more than 10x gain in efficiency.

Keywords

Parameter estimation Model personalization Cardiac electrophysiology Variational auto-encoder Bayesian optimization 

Notes

Acknowledgment

This work is supported by the National Science Foundation under CAREER Award ACI-1350374 and the National Institute of Heart, Lung, and Blood of the National Institutes of Health under Award R21Hl125998.

References

  1. 1.
    Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7(3), 293–301 (1996)CrossRefGoogle Scholar
  2. 2.
    Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)
  3. 3.
    Chinchapatnam, P., Rhode, K.S., Ginks, M.: Model-based imaging of cardiac apparent conductivity and local conduction velocity for diagnosis and planning of therapy. IEEE Trans. Med. Imaging 27(11), 1631–1642 (2008)CrossRefGoogle Scholar
  4. 4.
    Dhamala, J., Sapp, J.L., Horacek, M., Wang, L.: Spatially-adaptive multi-scale optimization for local parameter estimation: application in cardiac electrophysiological models. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 282–290. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46726-9_33CrossRefGoogle Scholar
  5. 5.
    Garcia, V., Nielsen, F., Nock, R.: Levels of details for Gaussian mixture models. In: Zha, H., Taniguchi, R., Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5995, pp. 514–525. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12304-7_48CrossRefGoogle Scholar
  6. 6.
    Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
  7. 7.
    Lê, M., Delingette, H., Kalpathy-Cramer, J.: MRI based Bayesian personalization of a tumor growth model. IEEE TMI 35(10), 2329–2339 (2016)Google Scholar
  8. 8.
    Plonsey, R.: Bioelectric Phenomena. Wiley Online Library, Hoboken (1969)Google Scholar
  9. 9.
    Sermesant, M., Chabiniok, R., Chinchapatnam, P., Mansi, T., et al.: Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med. Image Anal. 16(1), 201–215 (2012)CrossRefGoogle Scholar
  10. 10.
    Wang, L., Zhang, H., Wong, K.C., Liu, H., Shi, P.: Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials. IEEE Trans. Biomed. Eng. 57(2), 296–315 (2010)CrossRefGoogle Scholar
  11. 11.
    Wong, K.C., Sermesant, M., Rhode, K.: Velocity-based cardiac contractility personalization from images using derivative-free optimization. J. Mech. Behav. Biomed. Mater. 43, 35–52 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jwala Dhamala
    • 1
    Email author
  • Sandesh Ghimire
    • 1
  • John L. Sapp
    • 2
  • B. Milan Horáček
    • 2
  • Linwei Wang
    • 1
  1. 1.Rochester Institute of TechnologyNew YorkUSA
  2. 2.Dalhousie UniversityHalifaxCanada

Personalised recommendations