Advertisement

Cell Detection with Star-Convex Polygons

  • Uwe SchmidtEmail author
  • Martin WeigertEmail author
  • Coleman Broaddus
  • Gene Myers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11071)

Abstract

Automatic detection and segmentation of cells and nuclei in microscopy images is important for many biological applications. Recent successful learning-based approaches include per-pixel cell segmentation with subsequent pixel grouping, or localization of bounding boxes with subsequent shape refinement. In situations of crowded cells, these can be prone to segmentation errors, such as falsely merging bordering cells or suppressing valid cell instances due to the poor approximation with bounding boxes. To overcome these issues, we propose to localize cell nuclei via star-convex polygons, which are a much better shape representation as compared to bounding boxes and thus do not need shape refinement. To that end, we train a convolutional neural network that predicts for every pixel a polygon for the cell instance at that position. We demonstrate the merits of our approach on two synthetic datasets and one challenging dataset of diverse fluorescence microscopy images.

References

  1. 1.
    Amat, F., Lemon, W., Mossing, D.P., McDole, K., Wan, Y., Branson, K., Myers, E.W., Keller, P.J.: Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods 11(9), 951 (2014)CrossRefGoogle Scholar
  2. 2.
    Boutros, M., Heigwer, F., Laufer, C.: Microscopy-based high-content screening. Cell 163(6), 1314–1325 (2015)CrossRefGoogle Scholar
  3. 3.
    Caicedo, J.C., et al.: Evaluation of deep learning strategies for nucleus segmentation in fluorescence images. bioRxiv (2018)Google Scholar
  4. 4.
    Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: CVPR (2016)Google Scholar
  5. 5.
    Guerrero-Pena, F.A., Marrero Fernandez, P.D., Ren, T.I., Yui, M., Rothenberg, E., Cunha, A.: Multiclass weighted loss for instance segmentation of cluttered cells. arXiv (2018)Google Scholar
  6. 6.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)Google Scholar
  7. 7.
    Jetley, S., Sapienza, M., Golodetz, S., Torr, P.H.: Straight to shapes: real-time detection of encoded shapes. In: CVPR (2017)Google Scholar
  8. 8.
    Jug, F., Levinkov, E., Blasse, C., Myers, E.W., Andres, B.: Moral lineage tracing. In: CVPR (2016)Google Scholar
  9. 9.
    Liu, W., et al.: SSD: single shot multibox detector. In: ECCV (2016)Google Scholar
  10. 10.
    Ma, J., et al.: Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans. Multimed. (2018)Google Scholar
  11. 11.
    Meijering, E.: Cell segmentation: 50 years down the road. IEEE Signal Process. Mag. 29(5), 140–145 (2012)CrossRefGoogle Scholar
  12. 12.
    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR (2016)Google Scholar
  13. 13.
    Rempfler, M., Kumar, S., Stierle, V., Paulitschke, P., Andres, B., Menze, B.H.: Cell lineage tracing in lens-free microscopy videos. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 3–11. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66185-8_1CrossRefGoogle Scholar
  14. 14.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)Google Scholar
  15. 15.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  16. 16.
    Sommer, C., Straehle, C., Koethe, U., Hamprecht, F.A.: Ilastik: interactive learning and segmentation toolkit. In: International Symposium on Biomedical Imaging (2011)Google Scholar
  17. 17.
    Ulman, V., et al.: An objective comparison of cell-tracking algorithms. Nat. Methods 14(12), 1141 (2017)CrossRefGoogle Scholar
  18. 18.
    Ulman, V., Orémuš, Z., Svoboda, D.: TRAgen: a tool for generation of synthetic time-lapse image sequences of living cells. In: Murino, V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9279, pp. 623–634. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23231-7_56CrossRefGoogle Scholar
  19. 19.
    Xie, W., Noble, J.A., Zisserman, A.: Microscopy cell counting and detection with fully convolutional regression networks. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 6(3), 283–292 (2018)CrossRefGoogle Scholar
  20. 20.
    Yurchenko, V., Lempitsky, V.: Parsing images of overlapping organisms with deep singling-out networks. In: CVPR (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
  2. 2.Center for Systems Biology DresdenDresdenGermany
  3. 3.Faculty of Computer ScienceTechnical University DresdenDresdenGermany

Personalised recommendations