SLSDeep: Skin Lesion Segmentation Based on Dilated Residual and Pyramid Pooling Networks

  • Md. Mostafa Kamal SarkerEmail author
  • Hatem A. Rashwan
  • Farhan Akram
  • Syeda Furruka Banu
  • Adel Saleh
  • Vivek Kumar Singh
  • Forhad U. H. Chowdhury
  • Saddam Abdulwahab
  • Santiago Romani
  • Petia Radeva
  • Domenec Puig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11071)


Skin lesion segmentation (SLS) in dermoscopic images is a crucial task for automated diagnosis of melanoma. In this paper, we present a robust deep learning SLS model represented as an encoder-decoder network. The encoder network is constructed by dilated residual layers, in turn, a pyramid pooling network followed by three convolution layers is used for the decoder. Unlike the traditional methods employing a cross-entropy loss, we formulated a new loss function by combining both Negative Log Likelihood (NLL) and End Point Error (EPE) to accurately segment the boundaries of melanoma regions. The robustness of the proposed model was evaluated on two public databases: ISBI 2016 and 2017 for skin lesion analysis towards melanoma detection challenge. The proposed model outperforms the state-of-the-art methods in terms of the segmentation accuracy. Moreover, it is capable of segmenting about 100 images of a \(384\times 384\) size per second on a recent GPU.


Skin lesion segmentation melanoma Deep learning Dilated residual networks Pyramid pooling 



This research is funded by the program Marti Franques under the agreement between Universitat Rovira i Virgili and Fundació Catalunya La Pedrera.


  1. 1.
    Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. IJCV 92(1), 1–31 (2011)CrossRefGoogle Scholar
  2. 2.
    Berseth, M.: ISIC 2017-skin lesion analysis towards melanoma detection. arXiv preprint arXiv:1703.00523 (2017)
  3. 3.
    Bi, L., Kim, J., Ahn, E., Feng, D.: Automatic skin lesion analysis using large-scale dermoscopy images and deep residual networks. preprint arXiv:1703.04197 (2017)
  4. 4.
    Celebi, M.E., Wen, Q., Iyatomi, H., Shimizu, K., Zhou, H., Schaefer, G.: A state-of-the-art survey on lesion border detection in dermoscopy images. In: Dermoscopy Image Analysis, pp. 97–129 (2015)CrossRefGoogle Scholar
  5. 5.
    Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. arXiv preprint arXiv:1606.00915 (2016)
  6. 6.
    Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1710.05006 (2017)
  7. 7.
    Day, G.R., Barbour, R.H.: Automated melanoma diagnosis: where are we at? Skin Res. Technol. 6(1), 1–5 (2000)CrossRefGoogle Scholar
  8. 8.
    Gutman, D., et al.: Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1605.01397 (2016)
  9. 9.
    He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. PAMI 37(9), 1904–1916 (2015)CrossRefGoogle Scholar
  10. 10.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456 (2015)Google Scholar
  11. 11.
    Kardynal, A., Olszewska, M.: Modern non-invasive diagnostic techniques in the detection of early cutaneous melanoma. J. Dermatol. Case Rep. 8(1), 1 (2014)CrossRefGoogle Scholar
  12. 12.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  13. 13.
    Lin, B.S., Michael, K., Kalra, S., Tizhoosh, H.: Skin lesion segmentation: U-nets versus clustering. arXiv preprint arXiv:1710.01248 (2017)
  14. 14.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of CVPR, pp. 3431–3440 (2015)Google Scholar
  15. 15.
    Paszke, A., Gross, S., Chintala, S., Chanan, G.: Pytorch (2017)Google Scholar
  16. 16.
    Rahman, M., Alpaslan, N., Bhattacharya, P.: Developing a retrieval based diagnostic aid for automated melanoma recognition of dermoscopic images. In: Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–7. IEEE (2016)Google Scholar
  17. 17.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). Scholar
  18. 18.
    Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2017. CA Cancer J. Clin. 67(1), 7–30 (2017). Scholar
  19. 19.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)Google Scholar
  21. 21.
    Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)
  22. 22.
    Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: Computer Vision and Pattern Recognition, vol. 1 (2017)Google Scholar
  23. 23.
    Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. TMI 36(4), 994–1004 (2017)Google Scholar
  24. 24.
    Yuan, Y., Chao, M., Lo, Y.C.: Automatic skin lesion segmentation with fully convolutional-deconvolutional networks. arXiv preprint arXiv:1703.05165 (2017)
  25. 25.
    Zhang, X.: Melanoma segmentation based on deep learning. Comput. Assist. Surg. 22(sup1), 267–277 (2017)CrossRefGoogle Scholar
  26. 26.
    Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: IEEE Conference on CVPR, pp. 2881–2890 (2017)Google Scholar
  27. 27.
    Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20K dataset. In: Proceedings of the IEEE Conference CVPR (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Md. Mostafa Kamal Sarker
    • 1
    Email author
  • Hatem A. Rashwan
    • 1
  • Farhan Akram
    • 2
  • Syeda Furruka Banu
    • 3
  • Adel Saleh
    • 1
  • Vivek Kumar Singh
    • 1
  • Forhad U. H. Chowdhury
    • 4
  • Saddam Abdulwahab
    • 1
  • Santiago Romani
    • 1
  • Petia Radeva
    • 5
  • Domenec Puig
    • 1
  1. 1.DEIMUniversitat Rovira i VirgiliTarragonaSpain
  2. 2.Imaging Informatics DivisionBioinformatics InstituteSingaporeSingapore
  3. 3.ETSEQUniversitat Rovira i VirgiliTarragonaSpain
  4. 4.Liverpool School of Tropical MedicineLiverpoolUK
  5. 5.Department of MathematicsUniversity of BarcelonaBarcelonaSpain

Personalised recommendations