Advertisement

Fully Automated Blind Color Deconvolution of Histopathological Images

  • Natalia Hidalgo-Gavira
  • Javier MateosEmail author
  • Miguel Vega
  • Rafael Molina
  • Aggelos K. Katsaggelos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11071)

Abstract

Most whole-slide histological images are stained with hematoxylin and eosin dyes. Slide stain separation or color deconvolution is a crucial step within the digital pathology workflow. In this paper, the blind color deconvolution problem is formulated within the Bayesian framework. Our model takes into account both spatial relations among image pixels and similarity to a given reference color-vector matrix. Using Variational Bayes inference, an efficient new blind color deconvolution method is proposed which provides a fully automated procedure to estimate all the unknowns in the problem. A comparison with classical and current state-of-the-art color deconvolution algorithms, using real images with known ground truth hematoxylin and eosin values, has been carried out demonstrating the superiority of the proposed approach.

Keywords

Blind color deconvolution Histopathological images Bayesian modelling and inference Variational Bayes 

References

  1. 1.
    Alsubaie, N., Trahearn, N., et al.: Stain deconvolution using statistical analysis of multi-resolution stain colour representation. PLOS ONE 12(1), e0169875 (2017)CrossRefGoogle Scholar
  2. 2.
    Bishop, C.: Pattern Recognition and Machine Learning, pp. 454–455. Springer, New York (2006)zbMATHGoogle Scholar
  3. 3.
    Carey, D., Wijayathunga, V.N., Bulpitt, A.J., Treanor, D.: A novel approach for the colour deconvolution of multiple histological stains. In: Proceedings of the 19th Conference of Medical Image Understanding and Analysis, pp. 156–162 (2015)Google Scholar
  4. 4.
    Gavrilovic, M., Azar, J.C., et al.: Blind color decomposition of histological images. IEEE Trans. Med. Imaging 32(6), 983–994 (2013)CrossRefGoogle Scholar
  5. 5.
    Khan, A.M., Rajpoot, N., Treanor, D., Magee, D.: A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans. Biomed. Eng. 61(6), 1729–1738 (2014)CrossRefGoogle Scholar
  6. 6.
    Macenko, M., Niethammer, M., et al.: A method for normalizing histology slides for quantitative analysis. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1107–1110 (2009)Google Scholar
  7. 7.
    McCann, M.T., Majumdar, J., et al.: Algorithm and benchmark dataset for stain separation in histology images. In: IEEE International Conference on Image Processing (ICIP), pp. 3953–3957 (2014)Google Scholar
  8. 8.
    Rabinovich, A., Agarwal, S., Laris, C., Price, J.H., Belongie, S.J.: Unsupervised color decomposition of histologically stained tissue samples. In: Advances in Neural Information Processing Systems, pp. 667–674 (2004)Google Scholar
  9. 9.
    Ruifrok, A.C., Johnston, D.A.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Hist. 23(4), 291–299 (2001)Google Scholar
  10. 10.
    Taylor, C.R., Levenson, R.M.: Quantification of immunohistochemistry-issues concerning methods, utility and semiquantitative assessment II. Histopathology 49(4), 411–424 (2006)CrossRefGoogle Scholar
  11. 11.
    Vahadane, A., Peng, T., et al.: Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 35(8), 1962–1971 (2016)CrossRefGoogle Scholar
  12. 12.
    Wang, Z., Bovik, A.C., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Proc. 13, 600–612 (2004)CrossRefGoogle Scholar
  13. 13.
    Xu, J., Xiang, L., Wang, G., et al.: Sparse Non-negative Matrix Factorization (SNMF) based color unmixing for breast histopathological image analysis. Comput. Med. Imaging Graph. 46, 20–29 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Natalia Hidalgo-Gavira
    • 1
  • Javier Mateos
    • 1
    Email author
  • Miguel Vega
    • 2
  • Rafael Molina
    • 1
  • Aggelos K. Katsaggelos
    • 3
  1. 1.Dpto. de Ciencias de la Computación e I. A.Universidad de GranadaGranadaSpain
  2. 2.Dpto. de Lenguajes y Sistemas InformáticosUniversidad de GranadaGranadaSpain
  3. 3.Department of Electrical Engineering and Computer ScienceNorthwestern UniversityEvanstonUSA

Personalised recommendations