Advertisement

Graph CNN for Survival Analysis on Whole Slide Pathological Images

  • Ruoyu Li
  • Jiawen Yao
  • Xinliang Zhu
  • Yeqing Li
  • Junzhou HuangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11071)

Abstract

Deep neural networks have been used in survival prediction by providing high-quality features. However, few works have noticed the significant role of topological features of whole slide pathological images (WSI). Learning topological features on WSIs requires dense computations. Besides, the optimal topological representation of WSIs is still ambiguous. Moreover, how to fully utilize the topological features of WSI in survival prediction is an open question. Therefore, we propose to model WSI as graph and then develop a graph convolutional neural network (graph CNN) with attention learning that better serves the survival prediction by rendering the optimal graph representations of WSIs. Extensive experiments on real lung and brain carcinoma WSIs have demonstrated its effectiveness.

References

  1. 1.
    Chen, P.Y., Zhang, B., Al Hasan, M.: Incremental eigenpair computation for graph laplacian matrices: theory and applications. Soc. Netw. Anal. Min. 8(1), 4 (2018)CrossRefGoogle Scholar
  2. 2.
    Chung, F.R.: Spectral Graph Theory, no. 92. American Mathematical Society, Providence (1997)Google Scholar
  3. 3.
    Cox, D.R.: Regression models and life-tables. J. R. Stat. Society. Ser. B (Methodological) 34, 187–220 (1972)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Dave, V.S., Al Hasan, M., Zhang, B., Reddy, C.K.: Predicting interval time for reciprocal link creation using survival analysis. Soc. Netw. Anal. Min. 8(1), 16 (2018)CrossRefGoogle Scholar
  5. 5.
    Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3837–3845 (2016)Google Scholar
  6. 6.
    Gunduz, C., Yener, B., Gultekin, S.H.: The cell graphs of cancer. Bioinformatics 20(suppl\(\_\)1), i145–i151 (2004)CrossRefGoogle Scholar
  7. 7.
    Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure Time Data, vol. 360. Wiley, Hoboken (2011)zbMATHGoogle Scholar
  8. 8.
    Kandoth, C., et al.: Mutational landscape and significance across 12 major cancer types. Nature 502(7471), 333–339 (2013)CrossRefGoogle Scholar
  9. 9.
    Katzman, J., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: Deep survival: a deep cox proportional hazards network. arXiv preprint arXiv:1606.00931 (2016)
  10. 10.
    Kramer, B.S., Berg, C.D., Aberle, D.R., Prorok, P.C.: Lung cancer screening with low-dose helical CT: results from the national lung screening trial (NLST). J. Med. Screen 18(3), 109–111 (2011)CrossRefGoogle Scholar
  11. 11.
    Lamprecht, M.R., Sabatini, D.M., Carpenter, A.E., et al.: Cellprofiler™: free, versatile software for automated biological image analysis. Biotechniques 42(1), 71 (2007)CrossRefGoogle Scholar
  12. 12.
    Li, R., Huang, J.: Fast regions-of-interest detection in whole slide histopathology images. In: Wu, G., Coupé, P., Zhan, Y., Munsell, B., Rueckert, D. (eds.) Patch-MI 2015. LNCS, vol. 9467, pp. 120–127. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-28194-0_15CrossRefGoogle Scholar
  13. 13.
    Li, R., Huang, J.: Learning graph while training: an evolving graph convolutional neural network. arXiv preprint arXiv:1708.04675 (2017)
  14. 14.
    Li, R., Li, Y., Fang, R., Zhang, S., Pan, H., Huang, J.: Fast preconditioning for accelerated multi-contrast MRI reconstruction. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 700–707. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24571-3_84CrossRefGoogle Scholar
  15. 15.
    Li, R., Wang, S., Zhu, F., Huang, J.: Adaptive graph convolutional neural networks. arXiv preprint arXiv:1801.03226 (2018)
  16. 16.
    Li, Y., Wang, J., Ye, J., Reddy, C.K.: A multi-task learning formulation for survival analysis. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1715–1724 (2016)Google Scholar
  17. 17.
    Mayr, A., Schmid, M.: Boosting the concordance index for survival data-a unified framework to derive and evaluate biomarker combinations. PloS one 9(1), e84483 (2014)CrossRefGoogle Scholar
  18. 18.
    Tibshirani, R., et al.: The lasso method for variable selection in the cox model. Stat. Med. 16(4), 385–395 (1997)CrossRefGoogle Scholar
  19. 19.
    Yang, Y., Zou, H.: A cocktail algorithm for solving the elastic net penalized cox’s regression in high dimensions. Stat. Interface 6(2), 167–173 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhang, B., Hasan, M.A.: Name disambiguation in anonymized graphs using network embedding. In: Proceedings of the 26th ACM International on Conference on Information and Knowledge Management (2017)Google Scholar
  21. 21.
    Zhu, X., Yao, J., Zhu, F., Huang, J.: Wsisa: making survival prediction from whole slide histopathological images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7234–7242 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ruoyu Li
    • 1
    • 2
  • Jiawen Yao
    • 1
    • 2
  • Xinliang Zhu
    • 1
    • 2
  • Yeqing Li
    • 1
    • 2
  • Junzhou Huang
    • 1
    • 2
    Email author
  1. 1.Department of Computer Science and EngineeringThe University of Texas at ArlingtonArlingtonUSA
  2. 2.Tencent AI LabShenzhenChina

Personalised recommendations