Advertisement

Model-Based Refinement of Nonlinear Registrations in 3D Histology Reconstruction

  • Juan Eugenio Iglesias
  • Marco Lorenzi
  • Sebastiano Ferraris
  • Loïc Peter
  • Marc Modat
  • Allison Stevens
  • Bruce Fischl
  • Tom Vercauteren
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11071)

Abstract

Recovering the 3D structure of a stack of histological sections (3D histology reconstruction) requires a linearly aligned reference volume in order to minimize z-shift and “banana effect”. Reconstruction can then be achieved by computing 2D registrations between each section and its corresponding resampled slice in the volume. However, these registrations are often inaccurate due to their inter-modality nature and to the strongly nonlinear deformations introduced by histological processing. Here we introduce a probabilistic model of spatial deformations to efficiently refine these registrations, without the need to revisit the imaging data. Our method takes as input a set of nonlinear registrations between pairs of 2D images (within or across modalities), and uses Bayesian inference to estimate the most likely spanning tree of latent transformations that generated the measured deformations. Results on synthetic and real data show that our algorithm can effectively 3D reconstruct the histology while being robust to z-shift and banana effect. An implementation of the approach, which is compatible with a wide array of existing registration methods, is available at JEI’s website: www.jeiglesias.com.

Notes

Acknowledgement

Supported by the ERC (Starting Grant 677697, awarded to JEI), Wellcome Trust (WT101957) and EPSRC (NS/A000027/1).

References

  1. 1.
    Adler, D.H., et al.: Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI. Neuroimage 84, 505–523 (2014)CrossRefGoogle Scholar
  2. 2.
    Stikov, N., et al.: In vivo histology of the myelin g-ratio with magnetic resonance imaging. Neuroimage 118, 397–405 (2015)CrossRefGoogle Scholar
  3. 3.
    Ourselin, S., Roche, A., Prima, S., Ayache, N.: Block matching: a general framework to improve robustness of rigid registration of medical images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 557–566. Springer, Heidelberg (2000).  https://doi.org/10.1007/978-3-540-40899-4_57CrossRefGoogle Scholar
  4. 4.
    Amunts, K., et al.: BigBrain: an ultrahigh-resolution 3D human brain model. Science 340(6139), 1472–1475 (2013)CrossRefGoogle Scholar
  5. 5.
    Malandain, G., Bardinet, E., Nelissen, K., Vanduffel, W.: Fusion of autoradiographs with an MR volume using 2-D and 3-D linear transformations. NeuroImage 23(1), 111–127 (2004)CrossRefGoogle Scholar
  6. 6.
    Yushkevich, P., et al.: 3D mouse brain reconstruction from histology using a coarse-to-fine approach. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 230–237. Springer, Heidelberg (2006).  https://doi.org/10.1007/11784012_28CrossRefGoogle Scholar
  7. 7.
    Casero, R., et al.: Transformation diffusion reconstruction of 3D histology volumes from 2D image stacks. Med. Image Anal. 38, 184–204 (2017)CrossRefGoogle Scholar
  8. 8.
    Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006).  https://doi.org/10.1007/11866565_113CrossRefGoogle Scholar
  9. 9.
    Modat, M., Daga, P., Cardoso, M.J., Ourselin, S., Ridgway, G.R., Ashburner, J.: Parametric non-rigid registration using a stationary velocity field. In: Mathematical Methods in Biomedical Image Analysis, pp. 145–150 (2012)Google Scholar
  10. 10.
    Iglesias, J.E., Liu, C.Y., Thompson, P.M., Tu, Z.: Robust brain extraction across datasets and comparison with publicly available methods. IEEE Trans. Med. Imaging 30(9), 1617–1634 (2011)CrossRefGoogle Scholar
  11. 11.
    Ding, S.L., et al.: Comprehensive cellular-resolution atlas of the adult human brain. J. Comp. Neurol. 524(16), 3127–3481 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Juan Eugenio Iglesias
    • 1
  • Marco Lorenzi
    • 2
  • Sebastiano Ferraris
    • 1
  • Loïc Peter
    • 5
  • Marc Modat
    • 1
  • Allison Stevens
    • 3
  • Bruce Fischl
    • 3
    • 4
  • Tom Vercauteren
    • 5
  1. 1.Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
  2. 2.Epione Team, INRIA Sophia AntipolisSophia Antipolis CedexFrance
  3. 3.Martinos Center for Biomedical ImagingHarvard Medical School and Massachusetts General HospitalBostonUSA
  4. 4.MIT Computer Science and Artificial Intelligence LaboratoryCambridgeUSA
  5. 5.Wellcome EPSRC Centre for Interventional and Surgical Sciences (WEISS)University College LondonLondonUK

Personalised recommendations