Uniqueness-Driven Saliency Analysis for Automated Lesion Detection with Applications to Retinal Diseases

  • Yitian ZhaoEmail author
  • Yalin Zheng
  • Yifan Zhao
  • Yonghuai Liu
  • Zhili Chen
  • Peng Liu
  • Jiang Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11071)


Saliency is important in medical image analysis in terms of detection and segmentation tasks. We propose a new method to extract uniqueness-driven saliency based on the uniqueness of intensity and spatial distributions within the images. The main novelty of this new saliency feature is that it is powerful in the detection of different types of lesions in different types of images without the need of tuning parameters for different problems. To evaluate its effectiveness, we have applied our method to the detection lesions of retinal images. Four different types of lesions: exudate, hemorrhage, microaneurysms and leakage from 7 independent public retinal image datasets of diabetic retinopathy and malarial retinopathy, were studied and the experimental results show that the proposed method is superior to the state-of-the-art methods.


Saliency Uniqueness Computer aided-diagnosis Retinopathy 



This work was supported National Natural Science Foundation of China (61601029, 61572076), Grant of Ningbo 3315 Innovation Team, and China Association for Science and Technology (2016QNRC001).


  1. 1.
    Cheng, M., Zhang, G., Mitra, N., Huang, X., Hu, S.: Global contrast based salient region detection. In: Proceedings IEEE International CVPR, pp. 409–416 (2011)Google Scholar
  2. 2.
    Fu, H., Cao, X., Tu, Z.: Cluster-based co-saliency detection. IEEE Trans. Image Process. 22(10), 3766–3778 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Zhao, Y., et al.: Intensity and compactness enabled saliency estimation for leakage detection in diabetic and malarial retinopathy. IEEE Trans. Med. Imag. 36(1), 51–63 (2017)CrossRefGoogle Scholar
  4. 4.
    Niemeijer, M., van Ginneken, B., Abramoff, M.D., et al.: Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans. Med. Imag 29(1), 185–195 (2010)CrossRefGoogle Scholar
  5. 5.
    Seoud, L., Hurtut, T., Chelbi, J., Cheriet, F., Pierre Langlois, J.M.: Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Trans. Med. Imag 35(4), 1116–1126 (2016)CrossRefGoogle Scholar
  6. 6.
    Giancardo, L., et al.: Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med. Image Anal. 16(1), 216–226 (2012)CrossRefGoogle Scholar
  7. 7.
    Pereira, C., Gonçalves, L., Ferreira, M.: Exudate segmentation in fundus images using an ant colony optimization approach. Inf. Sci. 296, 14–24 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Perazzi, F., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: CVPR (2012)Google Scholar
  9. 9.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)CrossRefGoogle Scholar
  10. 10.
    Dashtbozorg, B., Zhang, J., ter Haar Romeny, B.M.: Retinal microaneurysms detection using local convergence index features. CoRR, abs/1707.06865 (2017)Google Scholar
  11. 11.
    Zhang, X., et al.: Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med. Image Anal. 18(7), 1026–1043 (2014)CrossRefGoogle Scholar
  12. 12.
    Wang, S., Tang, H., et al.: Localizing microaneurysms in fundus images through singular spectrum analysis. IEEE Trans. Biomed. Eng. 64, 990–1002 (2017)CrossRefGoogle Scholar
  13. 13.
    Dai, B., Wu, X., Bu, W.: Retinal microaneurysms detection using gradient vector analysis and class imbalance classification. PLOS ONE 11, 1–23 (2016)Google Scholar
  14. 14.
    Zhao, Y., Rada, L., Chen, K., Harding, S., Zheng, Y.: Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application. IEEE Trans. Med. Imag. 34(9), 1797–1807 (2015)CrossRefGoogle Scholar
  15. 15.
    Cheng, J., et al.: Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans. Med. Imag 32, 1019–1032 (2013)CrossRefGoogle Scholar
  16. 16.
    Kalesnykiene, V., et al.: Diaretdb1 diabetic retinopathy database and evaluation protocol. In: Proceedings Conference on MIUA (2007)Google Scholar
  17. 17.
    Decencire, E., et al.: TeleOphta: machine learning and image processing methods for teleophthalmology. IRBM 34(2), 196–203 (2013)CrossRefGoogle Scholar
  18. 18.
    Kandemir, M., Hamprecht, F.A.: Computer-aided diagnosis from weak supervision: a benchmarking study. Comput. Med. Imag. Graph. 42, 44–50 (2015)CrossRefGoogle Scholar
  19. 19.
    Rabbani, H., Allingham, M., Mettu, P., Cousins, S., Farsiu, S.: Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema. Invest. Ophthalmol. Vis. Sci. 56(3), 1482–1492 (2015)CrossRefGoogle Scholar
  20. 20.
    Antal, B., et al.: An ensemble-based system for microaneurysm detection and diabetic retinopathy grading. IEEE Trans. Biomed. Eng. 59(6), 1720–1726 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Quellec, G., Charrière, K., Boudi, Y., Cochener, B., Lamard, M.: Deep image mining for diabetic retinopathy screening. Med. Image Anal. 39, 178–193 (2017)CrossRefGoogle Scholar
  22. 22.
    Gondal, W., et al.: Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images. CoRR, abs/1706.09634 (2017)Google Scholar
  23. 23.
    Zhou, L., et al.: Automatic hemorrhage detection in color fundus images based on gradual removal of vascular branches. In: Proceedings on ICIP, pp. 399–403 (2016)Google Scholar
  24. 24.
    Roychowdhury, S., Parhi, K.K.: DREAM: diabetic retinopathy analysis using machine learning. IEEE J. Biomed. Health Inform 18(5), 1717–1728 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yitian Zhao
    • 1
    Email author
  • Yalin Zheng
    • 2
  • Yifan Zhao
    • 3
  • Yonghuai Liu
    • 4
  • Zhili Chen
    • 5
  • Peng Liu
    • 1
  • Jiang Liu
    • 1
  1. 1.Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of SciencesCixiChina
  2. 2.Department of Eye and Vision ScienceLiverpool UniversityLiverpoolEngland
  3. 3.School of Aerospace, Transport and ManufacturingCranfield UniversityCranfieldEngland
  4. 4.Department of Computer ScienceAberystwyth UniversityAberystwythWales
  5. 5.School of Information and Control EngineeringShenyang Jianzhu UniversityShenyangChina

Personalised recommendations